Obfuscating simple functionalities from knowledge assumptions

Ward Beullens Hoeteck Wee

June 4, 2019

Simple VBB obfuscation with the KOALA

Ward Beullens Hoeteck Wee

1/23

Introduction : Simple talk

Simple schemes. We only use cyclic groups, no lattices, multi-linear maps,...

Simple functionalities. Point functions, pattern matching (i.e. conjunctions)

Simple proofs from KOALA, a new knowledge assumption.

Introduction : Contributions

New knowledge assumption KOALA

- Implied by GGM
- Simplifies a lot of VBB proofs

Analysis of an obfuscator for pattern matching (aka conjunctions)

- Modular: through Big Subset functionality.
- ▶ Better guarantees: VBB instead of d-VBB
- Weaker assumption: KOALA instead of GGM

VBB Obfuscation

VBB Obfuscation

Virtual Black Box (VBB) security definitions:

 VBB : Everything that you can learn from an obfuscation you can learn from black box access.

Simulator based definition Very strong (impossible for general circuits)

- Distributional VBB: Like VBB, but functions are drawn from some fixed distribution.
- *T*-VBB: Everything that you can learn from an obfuscation you can learn from black box access in time O(T)+poly.

VBB Obfuscation

KOALA

For a subspace $V \subset \mathbb{F}_p^n$, when can we distinguish $[\mathbf{v}] = (g^{v_1}, \dots, g^{v_n})$ for $\mathbf{v} \xleftarrow{\$} V$ from *n* random group elements?

If we know $\mathbf{u} \in V^{\perp}$, with $\mathbf{u} \neq 0$, then distinguishing is easy: just check if $\mathbf{u} \cdot [\mathbf{v}] := \prod_i [v_i]^{u_i} = [\mathbf{u} \cdot \mathbf{v}] = [0].$

Knowledge of OrthogonALity Assumption (KOALA) A cyclic group *G* satisfies KOALA if an adversary can only distinguish $[\mathbf{v}]$ for $\mathbf{v} \stackrel{\$}{\leftarrow} V$ from random if he can also produce $\mathbf{u} \in V^{\perp} \smallsetminus \{0\}.$

Theorem (GGM \Rightarrow KOALA)

In the generic group model, cyclic groups satisfy KOALA

Showing off the KOALA

Point function
$$p_x(y) = \begin{cases} 1 & \text{if } y = x \\ 0 & \text{otherwise} \end{cases}$$

Point function obfuscator [C98]: Obfuscator: $\mathcal{O}(f_x) = [r, -xr]$ for random $r \in \mathbb{F}_p$ Evaluation at y: check if $(y, 1) \cdot [r, -xr] = [0]$.

Sketch of VBB security proof assuming KOALA: Given A, we need to simulate $\mathcal{A}(\mathcal{O}(f_x))$, with only black box access to f_x .

A If \mathcal{A} does not distinguish $[\langle (1, -x) \rangle]$ from random, then simulator outputs $\mathcal{A}([r_1, r_2])$.

B Otherwise, use the KOALA to extract nonzero $(a, b) \perp (1, -x)$ and let simulator output $\mathcal{A}(\mathcal{O}(f_{\frac{a}{b}}))$.

Self composeability from KOALA

Definition (informal)

An obfuscator \mathcal{O} for function family \mathcal{F} is *k*-self composeable if $(\mathcal{O}(f_i), \dots, \mathcal{O}(f_k))$ reveals nothing more than *k* black box oracles for f_1, \dots, f_k .

Example

 $\mathcal{O}(f_x) = \mathcal{H}(x)$ is VBB secure obfuscator in ROM, but it is not 2-self composeable because $\mathcal{O}(f_{x_1}), \mathcal{O}(f_{x_2})$ leaks whether $x_1 = x_2$.

Theorem

For any k > 0, the point function obfuscator of [C98] is k-self composeable.

Proof: "Random or learn" with KOALA

Big Subset Functionality

Big Subset Functionality Given a subset $Y \subset \{1, \dots, n\}$ and a treshold *t*, define the function

$$f_{Y,t}: P(\{1, \cdots, n\}) \to \{0, 1\}: X \mapsto \begin{cases} 1 \text{ if } |X| \ge t \text{ and } X \subset Y \\ 0 \text{ otherwise} \end{cases}$$

Example

 $t = 4, Y = \blacksquare \square \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ $f_{Y,t}(\square \square \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare) = 1$ $f_{Y,t}(\square \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare) = 0$ $f_{Y,t}(\blacksquare \square \blacksquare \blacksquare \square \blacksquare) = 0$

Obfuscating big subset

Obfuscate $f_{Y,t}$: Pick polynomial $f \in \mathbb{F}_q[x]$ of degree t - 1 with f(0) = 0. Obfuscation is $[\mathbf{v}]$ with

$$v_i = \begin{cases} f(i) & \text{if } i \in Y \\ \text{random} & \text{if } i \notin Y \end{cases}$$

Evaluate obfuscated program at $X \subset \{1, \dots, n\}$ **.** Compute interpolation coefficients:

$$u_i = \begin{cases} \prod_{j \in X \smallsetminus \{i\}} \frac{j}{i-j} & \text{if } i \in X \\ 0 & \text{if } i \notin X \end{cases}$$

and check if $\mathbf{u} \cdot [\mathbf{v}] = [0]$. If $f_{Y,t}(X) = 1$, then $\mathbf{u} \cdot [\mathbf{v}] = [f(0)] = [0]$, otherwise $\mathbf{u} \cdot [\mathbf{v}]$ is uniformly random.

Obfuscating big subset: Example

Let
$$Y = \Box \blacksquare \blacksquare \blacksquare$$
, $t = 2$

Obfuscate $f_{Y,t}$: pick f of degree 1 with f(0) = 0:

f(x) = ax $\mathcal{O}(f_{Y,t}) = [(r, 2a, 3a, 4a)]$

Evaluate at
$$X = \Box$$

 $\mathbf{u} = (0, \frac{3}{2-3}, \frac{2}{3-2}, 0) = (0, -3, 2, 0)$
 $\mathbf{u} \cdot [\mathbf{v}] = [-3 * 2a + 3 * 2a] = [0]$

Evaluate at
$$X = \blacksquare \square \square \square :$$

 $\mathbf{u} = (\frac{2}{1-2}, \frac{1}{2-1}, 0, 0) = (-2, 1, 0, 0)$
 $\mathbf{u} \cdot [\mathbf{v}] = [-2r + 2a] \neq [0]$

15/23

KOALA proof for Big Subset Obfuscator

Sketch of VBB security proof assuming KOALA: Given \mathcal{A} , we need to simulate $\mathcal{A}(\mathcal{O}(f_{Y,t}))$, with only black box access to $f_{Y,t}$. Obfuscations of $f_{Y,t}$ are uniformly random in a subspace V, where $V = RS \times \mathbb{F}_q^{n-|Y|}$

A If \mathcal{A} does not distinguish [V] from random, then simulator outputs $\mathcal{A}([random vector])$.

B Otherwise, use the KOALA to extract nonzero $u \perp V$. Support of $u \in Y$, and u is a nonzero codeword, so it has at least t nonzero entries.

```
⇒ We recover a subset of Y of size ≥ t.
Recover Y, t from black box access.
Output \mathcal{A}(\mathcal{O}(f_{Y,t})).
```

k-self composeability holds too.

18/23

Pattern matching

We study [BKMPRS18] obfuscator for pattern matching with wildcards.

Pattern matching with wildcards

Given a pattern $\pi \in \{0,1,\star\}^n$, there is a pattern matching function

$$f_{\pi}: \{0,1\}^n \to \{0,1\}$$

: $\mathbf{x} \mapsto \begin{cases} 1 \text{ if } \forall i \quad x_i = \pi_i \text{ or } \pi_i = \star \\ 0 \text{ otherwise} \end{cases}$

Example

 $\pi = 01 \star 00$ $f_{\pi}(01100) = 1$ $f_{\pi}(00000) = 0$. Pattern Matching embeds into Big Subset

Pattern Matching	\rightarrow	Big subset
n	\mapsto	2 <i>n</i>
$\pi \in \{0,1,\star\}^n$	\mapsto	$(Y_{\pi} = \{1 + 2 * i + j \pi_i = * \text{ or } \pi_i = j\}, n)$
$\mathbf{x} \in \{0,1\}^n$	\mapsto	$X_{\mathbf{x}} = \{1 + 2 * i + j x_i = j\}$
$f_{\pi}(\mathbf{x}) = 1$	\Leftrightarrow	$f_{Y_{\pi},n}(X_{x}) = 1$
Example		
01.01		
$01 \star 01 \mapsto \square$		□ ■ , ⁵
v		,
01101 ↦ □] 🔳 🖸

Big subset obfuscator + embedding = [BKMPRS18] obfuscator.

21/23

Analyzing BKMPRS18 Obfuscator

...

From KOALA, we were able to prove a lot of security guarantees, and we also gave matching attacks to prove that they are optimal.

Crypto '18 Obfuscator is not:
$2^{n/2-\epsilon}$ -VBB secure
D-VBB secure for some dist.
with min entropy $n - \omega(\log n)$
VBB secure if number of
wildcards is $\omega(\log n)$.

. . .

 $^{^1}$ Also in independent work by J Bartusek, T Lepoint, F Ma, M Zhandry 22/23

Conclusion

In our work we:

- Introduce KOALA, which simplifies a lot of GGM proofs,
- prove security guarantees for BKMPRS18 obfuscator,
- give attacks to show our security guarantees are optimal.

Open problems:

 Construct simple (i.e. relying on cyclic groups) obfuscator for pattern matching with better security.

(e.g. $2^{\epsilon n}$ -VBB security)

 Construct simple obfuscators for other functionalities

