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Indistinguishability Obfuscator iO [BGI+01]

C1 ≡ C2, meaning 
• Same size |C1|=|C2| 
• Same truth table TB(C1) = TB(C2)

≈iO (C1) iO (C2){ } { }
Quest: Finding an efficient compiler iO

“Which one of two equivalent circuits C1 ≡ C2 is obfuscated?”
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Does iO exist?

•Direct Constructions
• All based on multilinear maps [GGH13,CLT13,GGH15]
• Same template in all works (all eggs in same basket?)
• Many attacks, fixes, repeat: hard to understand security

•Bootstrapping based constructions
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Bootsrapping Based Constructions:
Reduce, Reduce, Reduce

• What is the minimum functionality needed for iO?

• How much can we “clean up” assumptions?

• Much progress

• State of art:  degree 3 multilinear maps and degree 3 “block 
local” pseudorandom generators [LT17].

• Not clear how to instantiate deg 3 maps
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Can we base iO on anything else?

• Functional Encryption supporting computation of degree ≥ 3 
polynomials

• Should be good news except…..
• All constructions of functional encryption themselves based on multilinear 

maps 
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(mpk, msk)  Setup(1n)

Enc(mpk, m):

Kgen(msk, C):

skC

ct

y = C(m)

Dec( skC, ct ):

Functional Encryption

ct

skC
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The State of Affairs
• Using bilinear maps, have FE for degree 2 polys

• For iO, need FE for degree (at least) 3 polys

• Where does degree 3 come from?

• Arithmetic degree required to compute a PRG. 
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seed G(seed)

Random Pseudorandom

Pseudorandom 
Generator

PRG G

Expansion/stretch: Difference in output and input lengths, i.e |G(seed)| - |seed|



The State of Affairs

• Need FE to compute G(seed).

• Represent G as polynomial. 

• G associated with pair (L,E) where poly of degree L is required to 
compute PRG of expansion E.
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skG

CT(seed)

y = G(seed)



FE for NC1

iO for P/Poly

Uses randomizing 

polys [AIK11, LV16]

[LT17, Lin17, AS17]

[AJ15, BV15, BNPW16]

Lin-Tessaro, Crypto 17

Previously….

FE for NC0

PRG of Deg L, 

Exp E
FE for deg L poly

Bootstrapping, 
determines 
Exp E

Exists for deg 2 using 
bilinear maps 
[Lin17,BCFG17]

(2, E) possible?

Recall, G associated with (L,E)



The State of Affairs

• All works use randomizing polynomials for bootstrapping.

• Necessitates Boolean PRG with expansion E.

• Previously, Lin-Tessaro conjecture PRG with degree 2 and 
expansion E

• LV17, BBKK17 show that degree 2 impossible for expansion E
• Narrow margin of expansion E’ left open by attacks

• But not clear how to use this to build iO.
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PK FE for PRG SK FH FE for CNG
Direct 

Construction

Noisy Linear FE

FE for NC1

LWE/RLWE

Uses special “FE-compatible” 

FHE of [AR17] 

New Abstraction to build iO [A19]

Three different 
ways to instantiate 
abstraction.

New 
hardness 

conjectures

Sidesteps 
lower 
bound

New PRG 
familiesIntroduce CNG

Introduce non 

Boolean PRG
Boolean PRG 

lower expansion



Noisy Linear FE: The right abstraction ?

• Recall Linear FE [ABDP15,ALS16]: Enc(x), Keygen(y), Decrypt to get <x,y>.

• Possible from standard assumptions – DDH, LWE, QR

• Noisy Linear FE : Enc(x), Keygen(y), Decrypt to get <x,y> plus noise

• Where does noise come from? 

• What security properties does it need to satisfy?

• Going in circles ?
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Fundamental 
primitive in 
FE. Addition 
most basic!

A key new observation: 
Computing a noise term is easier 

as exact value not important

Noise must satisfy only  
mild statistical 

properties

Need not be Boolean, as 
no need for randomized 

enc

Weakening requirements on PRGs



Advantage 1: Relax requirements on PRGs

• Boolean: make do with lower expansion E’ which is not ruled out

• Non-Boolean PRGs: Two new classes of randomness generators
• Need not be Boolean: save degree blowup (caused by arithmetization)

• Satisfy much weaker property than pseudorandomness

• May be computable with lower degree

• How to instantiate these PRGs?
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Won’t have time 
to talk about 

this



• Noisy linear FE is used black box in 
bootstrapping

• Bootstrapping uses LWE. 

• Noisy linear FE may use any assumption
• In one instance, mix of pairings and lattices. Uses 

best of both.

Advantage 2: Permits Mixed Assumptions
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Garuda: Mythical Indian character
Half eagle, half man.



• Previously FE for degree L FE for NC0  FE for NC1 iO

• Can bootstrap to FE for NC1 directly.

Noisy Linear FE  FE for NC0  FE for NC1 iO

 FE for degree L FE for NC0  FE for NC1 iO

• More efficient

Advantage 3: More Efficient
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• Previously, all direct constructions use same template:
• Fix plaintext matrix branching program

• Add randomization layers: diagonal padding, random scalars, Kilian 
randomization

• Encode randomized matrices using one of three mmap families

• All eggs in same basket 

• Noisy linear FE can be constructed without multilinear, or even bilinear 
maps!

Advantage 4: Permits New Direct Constructions
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A key new observation: Old grandma advice!
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If you cannot have 
what you want, you 
must learn to want 
what you can have

Advantage 4: Permits New Direct Constructions



A key new observation: Relax requirement on correctness!
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If you cannot compute
what you can use, you 
must learn to use what 

you can compute



• Only <x,y> needs to be correct! G(seed) is allowed some corruption

• So far: Assume polynomial is PRG and insist on computing it exactly

• Here: Compute whatever can be computed and check if it can satisfy PRG 
like properties
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CT (x, seed)

sky,G

sky,G

CT(x, seed)

<x,y> + G’(seed’)

A key new observation: Relax requirement on correctness!



• Extend LWE based Linear FE of ALS16 to Noisy Linear FE using 
new hardness conjectures on lattices.

• Unrelated to multilinear map assumptions (modulo 
mathematical structure)

• May be more robust. May be post-quantum.

• Much simpler to analyse than mmap based direct 
constructions: no need for straddling sets, Kilian randomization 
etc used by all prior work

• First construction of nonlinear FE without any maps.

• Philosophically similar idea used in follow-up [JLMS19]
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Caution: 
Needs more 
cryptanalysis

Advantage 4: Permits New Direct Constructions



Bootstrapping Functional Encryption
Noisy Linear FE   FE for NC0  FE for NC1 iO
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Ring Learning with Errors Problem

Let ring
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vs

Sample s uniformly in Rq

a1 , b1 = a1 s + err1

a2 , b2 = a2 s + err2

am , bm = ams+ errm

ai uniform     Rq , ei ~ϕ R   

Rq  Zq[x]/  xn 1

DISTRIBUTION 1

ai, bi uniform     Rq

a’1 , b’1

a’2 , b’2

a’m , b’m

DISTRIBUTION 2



Regev Public Key Encryption

Finding short      such that                      is hard

SK : PK :

Encrypt (PK, m) : 

Decrypt (SK) : 

Small only if 
e is small
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Regev Public Key Encryption

SK : PK :

Encrypt (PK, m) : 

Decrypt (SK) : 

Message
encoding

24

0 1

1 2
2

c a s err

q
u ec s rr m

  

  
 
 





Randomness
encodinge a,u

1 0

2 1

;

;
2

2

e c

q
u s err m s e err

q
m error

c

u

 

 
        

 

 
  

 







What’s special about this PKE?
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Lends Itself to Fully Homomorphic
Encryption!



Symmetric key FHE  for Quadratic Polynomials (BV11)
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c1  u1s  err1  x1

c2  u2s  err2  x2

Encrypt (s, x1, x2):
Sample u1, u2 randomly in ring. Sample err1, err2. 
Compute :   

Evaluate (c1, c2, f = x1 x2):

Want: Use c1, c2 to compute product ciphertext c12 

that encrypts x1 x2

s: secret key



FHE Evaluation
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x1  c1  u1s

x2  c2  u2s

x1x2  c1c2  (c1u2  c2u1)s  u1u2s
2

We may write:

Let cmult = (c1 c2,    c1 u2 + c2 u1,   u1u2)

Given secret key s, and ciphertext cmult,
decryptor can recover message up to noise.



Onwards to Functional Encryption

• FHE secret key s permits decryptor to also decrypt 
original messages x1 and x2.

• Wish to constrain decryption so that key holder learns 
x1x2 but not individual x1 and x2
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Recall….
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1

1 1 2 1

2 2 2 2

c a s err

u s err x

u s err x

c

c

  

   

   

Regev PKE Ciphertext :

Observe:

• Ciphertext can be split into randomness carrier “c” and 
message carrier c1, c2. 

• Message carrier exactly resembles FHE Symmetric key CT



The Hope

• Switch View to FHE: 
• Interpret PKE message carrier components as FHE symmetric key ciphertexts

• FHE Computation: 
• Evaluate f on encrypted data using FHE.

• Recover encryption of f(x) 
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( )f f fu s err fc x   

• Switch view back to Regev PKE:
Given randomness carrier and message carrier for f(x), decrypt as in original 
Regev PKE 

1

( )f f f

c a s err

uc s err f x

  

   



The News (Good and Bad)
• The Bad: Too good to be true

• Want FHE computation to result in a CT

• Instead, CT looks like

• The Good: This blueprint works for linear functions

• Given CT(x), SK(y), decryption outputs <x,y>

• We’ll leverage linear functions to support deeper circuits
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( )f f fu s err fc x   

, ( )f f ct fu sc err f x   

KeyGen
needs but 

cannot know 
LWE label



Generalizing to Quadratic (AR17)

• Recall FHE multiplication:
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x1  c1  u1s

x2  c2  u2s

x1x2  c1c2  (c1u2  c2u1)s  u1u2s
2

• What if we group the terms differently?

x1x2  c1c2  u2(c1s) u1(c2s) u1u2(s2 )



Enc(mpk,  𝑥 = (𝑥1 … . . 𝑥𝑛)):

Kgen(msk, P):

Dec( skP, ctx ):

Functional Encryption for Quadratic polynomials  P(x) = x1x2
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[ ]{ }i i i i i nu s err xc    

LinearFE.Enc(𝑠2, 𝑐1 𝑠, … . 𝑐𝑛 𝑠)

LinearFE.KGen (𝑢1𝑢2, −𝑢2, −𝑢1, 0, . . , 0)

LinearFE.Dec 

< 𝑠2, 𝑐1 𝑠, … . 𝑐𝑛 𝑠 , 𝑢1𝑢2, −𝑢2, −𝑢1, 0, . . , 0 >

2

1 2 2 1 1 2

2

1 2 2

1 2

1 1 2 1 2 1 2

1 2

( )( ) ) (u u s u c u c s

c c u c u c s u u s c cs

x c

s

x c

 





 

  

Decryptor can compute c1c2 itself.



Is this secure?

• Attack: Easily recover s given exact linear equation 

• Intuition for fix: Exact linear equations trivial, noisy linear 
equations intractable

u2(c1s) u1(c2s) u1u2(s2 )

Motto: Add noise!

• Replace linear FE by noisy linear FE. 
• This is not a proof! 
• New proof technique to show this works
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Wrapping it up

• Generalizes to NC1 via induction 

• Very technical!

• Need encryptor to provide some extra encodings as “advice”

• Need to only compute linear function plus noise, i.e. noisy linear FE

• Can use FE for PRG or direct construction to generate noise

• Concurrent work by AJS18 identify similar classes of PRG, 

incomparable results

• Follow up work by LM18 improves assumption on PRG by 

handling leakage caused by polynomial bounded PRG
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Thank You for your attention 

Image Credits: Jackson Pollock, who solves 
similar problems in a different space!


