- w - P . P Fag
v o o~ o ;| R PR it ‘s - o = A 4 4
- P o > = o R - ’ &
o . - % - aul % 2 & : -
v L 7 A <% - ’ g T e J 4
& oy . 4 % &) . . L D e { 3 P ’ <
S » > / . < \ > \ F 4
v 4 : o s SR 2 g b i ey o %
i3 i : 2 g < £V 4 & b #) O
y - ’ . o . ' N \
2 \ TR ./ LN s v) By : o
) ¥ =) , % : X i 5
sk TR % ¥ AR Ay AR <
PN Y W e
i v - > o
@ \ = 2

ng Obfuscati om Noisy

/l

| Bootstrappi

-

“
W

.,
/

4

<& v v M N LB\ A v-» -) : T A
- & LT - ".’;:- & s gL W 8 o . ‘& 4 I ‘f Vs
’ 4 A ' & . 4 < ' < i 1 N \. : : o\ \ - - = .. ; S 3 <& b ,tl ¥ . T

¥ o g 2 3 - @2 4 ‘ R : : N . \ y e e ' 5 *

2 »
B

=4 ‘A ‘M", { % S‘ N] Rl ' 4%
Shweta Agrawal
lIT Madras

VLT ; v \
5 N o 9 . B0 ! \

Indistinguishability Obfuscator 10 [BGI+01]

“Which one of two equivalent circuits C, £ C, is obfuscated?”

C, = C,, meaning
* Samesize |C,|=|C,]|
* Same truth table TB(C,) = TB(C,)

{ Toa }-{ Toe }

Quest: Finding an efficient compiler 10

Does 10 exist?

* Direct Constructions

* All based on multilinear maps [GGH13,CLT13,GGH15]
* Same template in all works (all eggs in same basket?)
* Many attacks, fixes, repeat: hard to understand security

* Bootstrapping based constructions

Bootsrapping Based Constructions:
Reduce, Reduce, Reduce

* What is the minimum functionality needed for iO?
* How much can we “clean up” assumptions?
* Much progress

e State of art: degree 3 multilinear maps and degree 3 “block
local” pseudorandom generators [LT17].

* Not clear how to instantiate deg 3 maps

Can we base 10 on anything else?

* Functional Encryption supporting computation of degree > 3
polynomials

* Should be good news except.....

 All constructions of functional encryption themselves based on multilinear
maps ®

SEEMS LIKKE
| JUST KEEP
GOING AROUND
IN CIRCLES!

Functional Encryption

(mpk, msk) < Setup(1")
Enc(mpk, m):

Kgen(msk, C):

Dec(sk, ct):

The State of Affairs

* Using bilinear maps, have FE for degree 2 polys
* For 10, need FE for degree (at least) 3 polys

* Where does degree 3 come from?

* Arithmetic degree required to compute a PRG.

@« A

seed - - G(seed)

Random Pseudorandom

< 4

Expansion/stretch: Difference in output and input lengths, i.e |G(seed)| - | seed|

The State of Affairs

* Need FE to compute G(seed).

vy = G(seed)

* Represent G as polynomial.

e G associated with pair (£,F) where poly of degree /L is required to
compute PRG of expansion E.

P reVi O u S ‘y e e Recall, G associated with (£,E)

Lin-Tessaro, Crypto 17 __—
yP 10 for P/Poly
‘ [AJ15, BV15, BNPW16]
Bootstrapping,
: PPING FE for NC,
determines — N
Exp F Y Uses randomizing
P polys [AIK11, LV16]
FE for NC,
~—
I [LT17, Lin17, AS17]
(2,) possible? Exists for deg 2 using
bilinear maps
PRG of Deg £, FE for deg £ poly [Lin17,BCFG17]

Exp E

The State of Affairs

* All works use randomizing polynomials for bootstrapping.
* Necessitates Boolean PRG with expansion ‘E.

* Previously, Lin-Tessaro conjecture PRG with degree 2 and
expansion £

* LV17, BBKK17 show that degree 2 impossible for expansion £
* Narrow margin of expansion £’ left open by attacks
* But not clear how to use this to build 70.

10

New Abstraction to build iO [A19]

FE for NC,

Uses special “FE-compatible”
FHE of [AR17]

LWE/RLWE

Three different
ways to instantiate
abstraction.

Noisy Linear FE

A

Sidesteps Direct
lower PK FE for PRG SK FHFE for CNG Construction

bound Y 7y

New
hardness
conjectures

\ 4

New PRG
Introduce CNG families

Boolean PRG Introduce non
lower expansion Boolean PRG

Fundamental
primitive in
FE. Addition
most basic!

* Recall Linear FE [ABDP15,ALS16]: Enc(x), Keygen(y), Decrypt to get <x,y>.
Possible from standard assumptions — DDH, LWE, QR

Noisy Linear FE : Enc(x), Keygen(y), Decrypt to get <x,y> plus noise
Where does noise come from?

What security properties does it need to satisfy?

Going in circles ?

Noisy Linear FE: The right abstraction ?

9 &)
(D i 9 & A key n b ti
ew observation:
Noise must satisfy only Need not be Boolear.m, as : . : :
) e no need for randomized Computing a noise term is easier
mild statistical .
. enc as exact value not important
properties) y
, W, _/
/

Weakening requirements on PRGs

Advantage 1: Relax requirements on PRGs

* Boolean: make do with lower expansion Z which is not ruled out

* Non-Boolean PRGs: Two new classes of randomness generators
* Need not be Boolean: save degree blowup (caused by arithmetization)
 Satisfy much weaker property than pseudorandomness
* May be computable with lower degree

e How to instantiate these PRGs? Won’t have time

to talk about
this

13

Advantage 2: Permits Mixed Assumptions
N

y /
P LA

* Noisy linear FE is used black box in
bootstrapping

* Bootstrapping uses LWE.

* Noisy linear FE may use any assumption

* |n one instance, mix of pairings and lattices. Uses
best of both.

Garuda: Mythical Indian character
Half eagle, half man.

14

Advantage 3: More Efficient

* Previously FE for degree L = FE for NC, = FE for NC, = iO
* Can bootstrap to FE for NC, directly.
Noisy Linear FE 2>-FEferNE; = FE for NC; = i0
=» FE for degree L - EEferNE, - FE for NC, 2 iO

 More efficient

15

Advantage 4: Permits New Direct Constructions

* Previously, all direct constructions use same template:
* Fix plaintext matrix branching program

* Add randomization layers: diagonal padding, random scalars, Kilian
randomization

* Encode randomized matrices using one of three mmap families
* All eggs in same basket

* Noisy linear FE can be constructed without multilinear, or even bilinear
maps!

16

Advantage 4.
A key new o

Permits New

Direct Constructions

nservation: Olc

If you cannot have
what you want, you
must learn to want
what you can have

grandma advice!

17

A key new observation: Relax requirement on correctness!

If you cannot compute
what you can use, you
must learn to use what
you can compute

18

A key new observation: Relax requirement on correctness!

<x,y> + G’(seed’)

* Only <x,y> needs to be correct! G(seed) is allowed some corruption
e So far: Assume polynomial is PRG and insist on computing it exactly

* Here: Compute whatever can be computed and check if it can satisfy PRG
like properties

Advantage 4: Permits New Direct Constructions

* Extend LWE based Linear FE of ALS16 to Noisy Linear FE using
new hardness conjectures on lattices.

e Unrelated to multilinear map assumptions (modulo
mathematical structure)

Caution:
Needs more
cryptanalysis

* May be more robust. May be post-quantum.

* Much simpler to analyse than mmap based direct
constructions: no need for straddling sets, Kilian randomization
etc used by all prior work

* First construction of nonlinear FE without any maps.
* Philosophically similar idea used in follow-up [JLMS19]

20

Bootstrapping Functional Encryption
Noisy Linear FE >-FeferNE, = FE for NC, =2 iO

Ring Learning with Errors Problem

Let ring Ry =Z [X)/ <x"+1>

DISTRIBUTION 1 DISTRIBUTION 2
Sample s uniformly in R,

a,,b,=a;s+err, a’y, b’y
a,,b,=a,s+err, a’y, b’

I I

I Vs I

I I

! !
a,,b, =a,st+err C P

a; uniform R, e;~¢ R 3, b; uniform e R,

Regev Public Key Encryption

Finding short & such that <d;€ >=U is hard

Pseudorandom

«SK:€e PK:aUu By R-LWE

+Encrypt (PK, m) : L _
ypt {) C, =a-S+E€rr,

Small only if
e is small

clzu-s+err2+mEJ

+» Decrypt (SK) :

c,—<§,C, >

:uos+err2+mEJ—uos—<é;é’rr1>

=m PJ +error
2

23

Regev Public Key Encryption

Randomness
encoding

+Encrypt (PK, m) :

Message

C, =a-s+ern encoding

clzu-s+err2+mEJ

+ Decrypt (SK) :

c,—<§,C, >

:uos+err2+mEJ—uos—<§;é’rr1>

=m PJ +error
2

24

25

Lends Itself to Fully Homomorphic
Encryption!

.
LLJ
N
an
D
-
4
4
D)
O
O
qu
©
O
Q
Q.
Vg
IS
4
qu
-

Symmetric key FHE for Quadratic Polynomials (BV11)

S: secret key

Encrypt (s, x4, X,):
Sample u;, u, randomly in ring. Sample err, err,.

Compute :
C, =U,S+err +Xx,

C, = U,S+ErT, + X,

Evaluate (cy, ¢, f=x; X,):

Want: Use c,, ¢, to compute product ciphertext c,,
that encrypts x; X,

26

FHE Evaluation

We may write:
X, ®C, —U,S
X, =C,—U,S

. %X, = C,C, — (C,U, +C,U,)S +U,U,S°

mult —
Let c™ =(c,c,, c,u,+cC,uU;, UU,)

Given secret key s, and ciphertext cmult,

decryptor can recover message up to noise.

27

Onwards to Functional Encryption

* FHE secret key s permits decryptor to also decrypt
original messages x, and x,.

* Wish to constrain decryption so that key holder learns
X,X, but not individual x, and x,

28

Recall....
Regev PKE Ciphertext :

—

a- s+err

C =
C,=U,-S+Err, + X
C, =U,-S+Eerr, +X,

Observe:

(l 7

* Ciphertext can be split into randomness carrier “c” and

message carrier ¢, C,.

* Message carrier exactly resembles FHE Symmetric key CT

29

The Hope

* Switch View to FHE:
* Interpret PKE message carrier components as FHE symmetric key ciphertexts

* Evaluate f on encrypted data using FHE. N
* Recover encryption of f(x) C; =U: -S+E€IT, + f (X)

Given randomness carrier and message carrier for f(x), decrypt as in original

Regev PKE _, — —
C =a-Ss+€rr,

C, =U, -s+err. + f(X)

30

The News (Good and Bad)

* The Bad: Too good to be true

* Want FHE computation to result in a CT KeyGen
needs but
cannot know
C, =U,-S+err, +f LWE label

* Instead, CT looks like

C; =U; -S+err, + f(X)

* The Good: This blueprint works for linear functions
* Given CT(x), SK(y), decryption outputs <x,y>
 We'll leverage linear functions to support deeper circuits

31

Generalizing to Quadratic (AR17)

e Recall FHE multiplication:

X, =C —US

5 %X, = C,C, —(C,u, +C,u,)S +U,U,S°
 What if we group the terms differently?

E X1X2 ~ C1C2 - u2 (Cls) o ul(CZS) + u1u2 (SZ)

32

Functional Encryption for Quadratic polynomials P(x) = x;x,

Enc(mpk, X = (xqx3)): Dec(sk, ct,):
{Ci =U; -S+ErIT; + Xi}ie[n] LinearFE.Dec
LinearFE.Enc(s?,¢1 S, CpS) | < (%18, Cn 5), (Uglz, —Uz —uy, 0,..,0) >
= U,U, (52) —U, (C1S) —U (Czs)
=¢,C, —U,C,S—U,C,S+U,U,S* —C,C,
~ XX =66,

Kgen(msk, P):
Decryptor can compute c,c, itself.
e |inearFE.KGen (uqu,, —uy,—u4,0,..,0)

33

s this secure?

 Attack: Easily recover s given exact linear equation
U, (€,8) + U, (C,8) +Uyu, (5°)

* Intuition for fix: Exact linear equations trivial, noisy linear
equations intractable

Motto: Add noise!

 Replace linear FE by noisy linear FE.
* This is not a proof!
 New proof technique to show this works

34

Wrapping it up

* Generalizes to NC, via induction
* Very technical!
* Need encryptor to provide some extra encodings as “advice”

* Need to only compute linear function plus noise, i.e. noisy linear FE
e Can use FE for PRG or direct construction to generate noise

* Concurrent work by AJS18 identify similar classes of PRG,
incomparable results

* Follow up work by LM18 improves assumption on PRG by
handling leakage caused by polynomial bounded PRG

35

J -
- AR

a \" . !
\x\ Y \ : - ' ‘." » /2 ' : e 2 . 3 l— ’ 4: > ; !
, ,: . . ' ¥ & a . "l : ‘ : :..‘-‘_' l 9 (? : J'.'«' ka0
) : 4 \ : :'. I ; e 3 3 \ N v 3 G
\i5 } . 'I'/ " " \

n Pollock, who solves
\ similar problems in a different space!
) A i‘gﬁ’ _ P L7 % AW v iy . y ¥ ‘; .'q k7 fl o 7

3 ! kY
Y
.
- 53 ¢
: P > E J
———” / v 5 <
- o & ~
{
. ., *
< - i s -

