Indistinguishability Obfuscator $\mathfrak{i} O$ [BGI+01]

"Which one of two equivalent circuits $C_{1} \equiv C_{2}$ is obfuscated?"
$\mathrm{C}_{1} \equiv \mathrm{C}_{2}$, meaning

- Same size $\left|\mathrm{C}_{1}\right|=\left|\mathrm{C}_{2}\right|$
- Same truth table $\operatorname{TB}\left(\mathrm{C}_{1}\right)=\mathrm{TB}\left(\mathrm{C}_{2}\right)$

Quest: Finding an efficient compiler $\hat{i} O$

Does $\mathfrak{i} O$ exist?

- Direct Constructions
- All based on multilinear maps [GGH13,CLT13,GGH15]
- Same template in all works (all eggs in same basket?)
- Many attacks, fixes, repeat: hard to understand security
- Bootstrapping based constructions

Bootsrapping Based Constructions: Reduce, Reduce, Reduce

-What is the minimum functionality needed for iO?

-How much can we "clean up" assumptions?

- Much progress
- State of art: degree 3 multilinear maps and degree 3 "block local" pseudorandom generators [LT17].
- Not clear how to instantiate deg 3 maps

Can we base $i O$ on anything else?

- Functional Encryption supporting computation of degree ≥ 3 polynomials
- Should be good news except.....
- All constructions of functional encryption themselves based on multilinear maps :

Functional Encryption

Dec($\left.\mathrm{sk}_{\mathrm{C}}, \mathrm{ct}\right)$:

The State of Affairs

- Using bilinear maps, have FE for degree 2 polys
- For $i O$, need $F E$ for degree (at least) 3 polys
- Where does degree 3 come from?
- Arithmetic degree required to compute a PRG.

Expansion/stretch: Difference in output and input lengths, i.e |G(seed)| - |seed|

The State of Affairs

- Need FE to compute G(seed).

- Represent G as polynomial.
- G associated with pair $(\mathcal{L}, \mathcal{E})$ where poly of degree \mathcal{L} is required to compute PRG of expansion \mathcal{E}.

Previously....

Lin-Tessaro, Crypto 17

Bootstrapping, determines
$\operatorname{Exp} \mathcal{E}$

[AJ15, BV15, BNPW16]

Uses randomizing polys [AIK11, LV16]
[LT17, Lin17, AS17]

The State of Affairs

- All works use randomizing polynomials for bootstrapping.
- Necessitates Boolean PRG with expansion \mathcal{E}.
- Previously, Lin-Tessaro conjecture PRG with degree 2 and expansion \mathcal{E}
- LV17, BBKK17 show that degree 2 impossible for expansion \mathcal{E}
- Narrow margin of expansion \mathcal{E}^{\prime} left open by attacks
- But not clear how to use this to build $i=$.

New Abstraction to build iO [A19]

- Recall Linear FE [ABDP15,ALS16]: Enc(x), Keygen(y), Decrypt to get <x,y>.
- Possible from standard assumptions - DDH, LWE, QR
- Noisy Linear FE : Enc(x), Keygen(y), Decrypt to get <x,y> plus noise
- Where does noise come from?
- What security properties does it need to satisfy?
- Going in circles ?

Advantage 1: Relax requirements on PRGs

- Boolean: make do with lower expansion \mathcal{E} ' which is not ruled out
- Non-Boolean PRGs: Two new classes of randomness generators
- Need not be Boolean: save degree blowup (caused by arithmetization)
- Satisfy much weaker property than pseudorandomness
- May be computable with lower degree
- How to instantiate these PRGs?

Advantage 2: Permits Mixed Assumptions

- Noisy linear FE is used black box in bootstrapping
- Bootstrapping uses LWE.
- Noisy linear FE may use any assumption
- In one instance, mix of pairings and lattices. Uses best of both.

Garuda: Mythical Indian character Half eagle, half man.

Advantage 3: More Efficient

- Previously FE for degree $\mathcal{L} \rightarrow$ FE for $\mathrm{NC}_{0} \rightarrow$ FE for $\mathrm{NC}_{1} \rightarrow \mathrm{iO}$
- Can bootstrap to FE for NC_{1} directly.

Noisy Linear $\mathrm{FE} \rightarrow$ FE for $\mathrm{NG}_{\theta} \rightarrow \mathrm{FE}$ for $\mathrm{NC}_{1} \rightarrow \mathrm{iO}$
\rightarrow FE for degree $\mathcal{L} \rightarrow$ FE for $\mathrm{NG}_{0}-\rightarrow \mathrm{FE}$ for $\mathrm{NC}_{1} \rightarrow \mathrm{iO}$

- More efficient

Advantage 4: Permits New Direct Constructions

- Previously, all direct constructions use same template:
- Fix plaintext matrix branching program
- Add randomization layers: diagonal padding, random scalars, Kilian randomization
- Encode randomized matrices using one of three mmap families
- All eggs in same basket
- Noisy linear FE can be constructed without multilinear, or even bilinear maps!

Advantage 4: Permits New Direct Constructions A key new observation: Old grandma advice!

A key new observation: Relax requirement on correctness!

A key new observation: Relax requirement on correctness!

CT (x, seed)

- Only <x,y> needs to be correct! G(seed) is allowed some corruption
- So far: Assume polynomial is PRG and insist on computing it exactly
- Here: Compute whatever can be computed and check if it can satisfy PRG like properties

Advantage 4: Permits New Direct Constructions

- Extend LWE based Linear FE of ALS16 to Noisy Linear FE using new hardness conjectures on lattices.
- Unrelated to multilinear map assumptions (modulo mathematical structure)
- May be more robust. May be post-quantum.
- Much simpler to analyse than mmap based direct
 constructions: no need for straddling sets, Kilian randomization etc used by all prior work
- First construction of nonlinear FE without any maps.
- Philosophically similar idea used in follow-up [JLMS19]

Bootstrapping Functional Encryption Noisy Linear FE \rightarrow FEfor $\mathrm{NG}_{\theta} \rightarrow \mathrm{FE}$ for $\mathrm{NC}_{1} \rightarrow \mathrm{iO}$

Ring Learning with Errors Problem

Let ring $\quad R_{q}=Z_{q}[x] /<x^{n}+1>$

DISTRIBUTION 1

Sample s uniformly in R_{q}

$a_{1}, b_{1}=a_{1} s+e r r_{1}$
$a_{2}, b_{2}=a_{2} s+e r r_{2}$
\vdots
$a_{m}, b_{m}=a_{m} s+e r r_{m}$
a_{i} uniform $\in R_{q}, e_{i} \sim \varphi \in R$

DISTRIBUTION 2

Regev Public Key Encryption

Finding short \vec{e} such that $\langle\vec{a} ; \vec{e}\rangle=u$ is hard
SK: $\vec{e} \quad$ PK $: \vec{a}, u$

* Encrypt (PK, m) :

$$
\begin{aligned}
& \vec{c}_{0}=\vec{a} \cdot s+\vec{e} r r_{1} \\
& c_{1}=u \cdot s+e r r_{2}+m\left\lfloor\frac{q}{2}\right\rfloor
\end{aligned}
$$

*Decrypt (SK) :

$$
\begin{aligned}
& c_{1}-<\vec{e} ; \vec{c}_{0}> \\
& =u \cdot s+e r r_{2}+m \mid \\
& =m\left|\frac{q}{2}\right|+\text { error }
\end{aligned}
$$

$$
=u \cdot s+e r r_{2}+m\left\lfloor\frac{q}{2}\right\rfloor-u \cdot s-<\vec{e} ; \vec{e} r r_{1}>
$$

Regev Public Key Encryption

*SK: $\vec{e} \quad$ PK $: \vec{a}, u$
*Encrypt (PK, m) :

*Decrypt (SK) :

$$
\begin{aligned}
& c_{1}-<\vec{e} ; \vec{c}_{0}> \\
& =u \cdot s+e \operatorname{err}_{2}+m\left\lfloor\frac{q}{2}\right\rfloor-u \cdot s-<\vec{e} ; \vec{e} r r_{1}> \\
& =m\left\lfloor\frac{q}{2}\right\rfloor+\text { error }
\end{aligned}
$$

What's special about this PKE?

Lends Itself to Fully Homomorphic Encryption!

Symmetric key FHE for Quadratic Polynomials (BV11)

s: secret key

Encrypt (s, x_{1}, x_{2}):

Sample u_{1}, u_{2} randomly in ring. Sample err ${ }_{1}$, err ${ }_{2}$. Compute :

$$
\begin{aligned}
& c_{1}=u_{1} s+e r r_{1}+x_{1} \\
& c_{2}=u_{2} s+e r r_{2}+x_{2}
\end{aligned}
$$

Evaluate $\left(\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{f}=\mathrm{x}_{1} \mathrm{x}_{2}\right)$:
Want: Use $\mathrm{c}_{1}, \mathrm{c}_{2}$ to compute product ciphertext c_{12} that encrypts $\mathrm{x}_{1} \mathrm{x}_{2}$

FHE Evaluation

We may write:

$$
\begin{aligned}
& x_{1} \approx c_{1}-u_{1} s \\
& x_{2} \approx c_{2}-u_{2} s
\end{aligned}
$$

$$
\therefore x_{1} x_{2} \approx c_{1} c_{2}-\left(c_{1} u_{2}+c_{2} u_{1}\right) s+u_{1} u_{2} s^{2}
$$

$$
\text { Let } \mathrm{c}^{\text {mult }}=\left(\begin{array}{lll}
\mathrm{c}_{1} \mathrm{c}_{2}, & \mathrm{c}_{1} \mathrm{u}_{2}+\mathrm{c}_{2} \mathrm{u}_{1}, & \mathrm{u}_{1} u_{2}
\end{array}\right)
$$

Given secret key s, and ciphertext c ${ }^{\text {mult }}$, decryptor can recover message up to noise.

Onwards to Functional Encryption

- FHE secret key s permits decryptor to also decrypt original messages x_{1} and x_{2}.
- Wish to constrain decryption so that key holder learns $\mathrm{x}_{1} \mathrm{x}_{2}$ but not individual x_{1} and x_{2}

Recall....

Regev PKE Ciphertext :

$$
\begin{aligned}
& \vec{c}=\vec{a} \cdot s+\vec{e} r r_{1} \\
& c_{1}=u_{1} \cdot s+e r r_{2}+x_{1} \\
& c_{2}=u_{2} \cdot s+e r r_{2}+x_{2}
\end{aligned}
$$

Observe:

- Ciphertext can be split into randomness carrier "c" and message carrier $\mathrm{c}_{1}, \mathrm{c}_{2}$.
- Message carrier exactly resembles FHE Symmetric key CT

The Hope

- Switch View to FHE:

- Interpret PKE message carrier components as FHE symmetric key ciphertexts
- FHE Computation:
- Evaluate f on encrypted data using FHE.
- Recover encryption of $\mathrm{f}(\mathrm{x}) \quad c_{f}=u_{f} \cdot s+e r r_{f}+f(\vec{x})$
- Switch view back to Regev PKE:

Given randomness carrier and message carrier for $f(x)$, decrypt as in original Regev PKE

$$
\begin{aligned}
& \vec{c}=\vec{a} \cdot s+\vec{e} r r_{1} \\
& c_{f}=u_{f} \cdot s+e r r_{f}+f(\vec{x})
\end{aligned}
$$

The News (Good and Bad)

- The Bad: Too good to be true
- Want FHE computation to result in a CT

KeyGen needs but cannot know LWE label

- Instead, CT looks like

$$
c_{f}=u_{f, c t} \cdot s+e r r_{f}+f(\vec{x})
$$

- The Good: This blueprint works for linear functions
- Given CT(x), SK(y), decryption outputs <x,y>
- We'll leverage linear functions to support deeper circuits

Generalizing to Quadratic (AR17)

- Recall FHE multiplication:

$$
\begin{aligned}
& x_{1} \approx c_{1}-u_{1} s \\
& x_{2} \approx c_{2}-u_{2} s \\
& \therefore x_{1} x_{2} \approx c_{1} c_{2}-\left(c_{1} u_{2}+c_{2} u_{1}\right) s+u_{1} u_{2} s^{2}
\end{aligned}
$$

-What if we group the terms differently?

$$
\therefore x_{1} x_{2} \approx c_{1} c_{2}-u_{2}\left(c_{1} s\right)-u_{1}\left(c_{2} s\right)+u_{1} u_{2}\left(s^{2}\right)
$$

Functional Encryption for Quadratic polynomials $P(x)=x_{1} x_{2}$

Enc(mpk, $\left.\vec{x}=\left(x_{1} \ldots \ldots x_{n}\right)\right):$
$\left\{c_{i}=u_{i} \cdot s+e r r_{i}+x_{i}\right\}_{i \in[n]}$
LinearFE.Enc $\left(s^{2}, c_{1} s, \ldots . c_{n} s\right)$

LinearFE.Dec

$$
\begin{aligned}
& <\left(s^{2}, c_{1} s, \ldots . c_{n} s\right),\left(u_{1} u_{2},-u_{2},-u_{1}, 0, \ldots, 0\right)> \\
& =u_{1} u_{2}\left(s^{2}\right)-u_{2}\left(c_{1} s\right)-u_{1}\left(c_{2} s\right) \\
& =c_{1} c_{2}-u_{2} c_{1} s-u_{1} c_{2} s+u_{1} u_{2} s^{2}-c_{1} c_{2} \\
& \quad \approx x_{1} x_{2}-c_{1} c_{2}
\end{aligned}
$$

Decryptor can compute $\mathrm{c}_{1} \mathrm{c}_{2}$ itself.
$\operatorname{Dec}\left(\mathrm{sk}_{\mathrm{p}}, \mathrm{ct}_{\mathrm{x}}\right)$:

Kgen(msk, P):

LinearFE.KGen $\left(u_{1} u_{2},-u_{2},-u_{1}, 0, . ., 0\right)$

Is this secure?

- Attack: Easily recover s given exact linear equation

$$
u_{2}\left(c_{1} s\right)+u_{1}\left(c_{2} s\right)+u_{1} u_{2}\left(s^{2}\right)
$$

- Intuition for fix: Exact linear equations trivial, noisy linear equations intractable

Motto: Add noise!

- Replace linear FE by noisy linear FE.
- This is not a proof!
- New proof technique to show this works

Wrapping it up

- Generalizes to NC_{1} via induction
- Very technical!
- Need encryptor to provide some extra encodings as "advice"
- Need to only compute linear function plus noise, i.e. noisy linear FE
- Can use FE for PRG or direct construction to generate noise
- Concurrent work by AJS18 identify similar classes of PRG, incomparable results
- Follow up work by LM18 improves assumption on PRG by handling leakage caused by polynomial bounded PRG

Thank You for your attention ©

