Bootstrapping Obfuscation from Noisy Linear FE

Shweta Agrawal

IIT Madras

Indistinguishability Obfuscator iO [BGI+01]

"Which one of two equivalent circuits $C_1 \equiv C_2$ is obfuscated?"

- $C_1 \equiv C_2$, meaning
- Same size $|C_1| = |C_2|$
- Same truth table TB(C₁) = TB(C₂)

$$\left\{ iO(C1) \right\} \approx \left\{ iO(C2) \right\}$$

Quest: Finding an efficient compiler iO

Does *iO* exist?

- Direct Constructions
 - All based on multilinear maps [GGH13,CLT13,GGH15]
 - Same template in all works (all eggs in same basket?)
 - Many attacks, fixes, repeat: hard to understand security
- Bootstrapping based constructions

Bootsrapping Based Constructions: Reduce, Reduce, Reduce

- What is the minimum functionality needed for iO?
- How much can we "clean up" assumptions?
- Much progress
- State of art: degree 3 multilinear maps and degree 3 "block local" pseudorandom generators [LT17].
- Not clear how to instantiate deg 3 maps

Can we base iO on anything else?

- Functional Encryption supporting computation of degree ≥ 3 polynomials
- Should be good news except.....
 - All constructions of functional encryption themselves based on multilinear maps ☺

Functional Encryption

 $(mpk, msk) \leftarrow Setup(1^n)$ Enc(mpk, m):

Kgen(msk, C):

Dec(sk_c, ct):

The State of Affairs

- Using bilinear maps, have FE for degree 2 polys
- For iO, need FE for degree (at least) 3 polys
- Where does degree 3 come from?
- Arithmetic degree required to compute a <u>PRG</u>.

Expansion/stretch: Difference in output and input lengths, i.e |G(seed)| - |seed|

The State of Affairs

• Need FE to compute G(seed).

- Represent G as polynomial.
- G associated with pair $(\mathcal{L}, \mathcal{F})$ where poly of degree \mathcal{L} is required to compute PRG of expansion \mathcal{F} .

The State of Affairs

- All works use randomizing polynomials for bootstrapping.
- Necessitates Boolean PRG with expansion \mathcal{I} .
- Previously, Lin-Tessaro conjecture PRG with degree 2 and expansion ${\mathcal E}$
- LV17, BBKK17 show that degree 2 impossible for expansion ${\cal E}$
- Narrow margin of expansion \mathcal{I} 'left open by attacks
- But not clear how to use this to build iO.

Fundamental primitive in FE. Addition most basic!

Noisy Linear FE: The right abstraction ?

- Recall <u>Linear</u> FE [ABDP15, ALS16]: Enc(x), Keygen(y), Decrypt to get <x, y>.
- Possible from standard assumptions DDH, LWE, QR
- Noisy Linear FE : Enc(x), Keygen(y), Decrypt to get <x,y> plus noise
- Where does noise come from?
- What security properties does it need to satisfy?
- Going in circles ?

Advantage 1: Relax requirements on PRGs

• Boolean: make do with lower expansion \mathcal{F} ' which is not ruled out

• Non-Boolean PRGs: Two new classes of randomness generators

- Need not be Boolean: save degree blowup (caused by arithmetization)
- Satisfy much weaker property than pseudorandomness
- May be computable with lower degree
- How to instantiate these PRGs?

Advantage 2: Permits Mixed Assumptions

- Noisy linear FE is used black box in bootstrapping
- Bootstrapping uses LWE.
- Noisy linear FE may use any assumption
 - In one instance, mix of pairings and lattices. Uses best of both.

Garuda: Mythical Indian character Half eagle, half man.

Advantage 3: More Efficient

- Previously FE for degree $\mathcal{L} \rightarrow$ FE for NC₀ \rightarrow FE for NC₁ \rightarrow iO
- Can bootstrap to FE for NC₁ directly. Noisy Linear FE \rightarrow FE for NC₀ \rightarrow FE for NC₁ \rightarrow iO
 - → FE for degree $\mathcal{L} \rightarrow FE$ for NC₀-→ FE for NC₁ → iO
- More efficient

Advantage 4: Permits New Direct Constructions

- Previously, all direct constructions use same template:
 - Fix plaintext matrix branching program
 - Add randomization layers: diagonal padding, random scalars, Kilian randomization
 - Encode randomized matrices using one of three mmap families
- All eggs in same basket
- Noisy linear FE can be constructed without multilinear, or even bilinear maps!

Advantage 4: Permits New Direct Constructions A key new observation: Old grandma advice!

A key new observation: Relax requirement on correctness!

If you cannot compute what you can use, you must learn to use what you can compute

A key new observation: Relax requirement on correctness!

- Only <x,y> needs to be correct! G(seed) is allowed some corruption
- So far: Assume polynomial is PRG and insist on computing it exactly
- Here: Compute whatever can be computed and check if it can satisfy PRG like properties

20

Advantage 4: Permits New Direct Constructions

- Extend LWE based Linear FE of ALS16 to Noisy Linear FE using new hardness conjectures on lattices.
- Unrelated to multilinear map assumptions (modulo mathematical structure)
- May be more robust. May be post-quantum.
- Much simpler to analyse than mmap based direct constructions: no need for straddling sets, Kilian randomization etc used by all prior work
- First construction of nonlinear FE without <u>any</u> maps.
- Philosophically similar idea used in follow-up [JLMS19]

Caution: Needs more cryptanalysis

Bootstrapping Functional Encryption Noisy Linear FE \rightarrow FE for NC₁ \rightarrow FE for NC₁ \rightarrow iO

Ring Learning with Errors Problem

et ring
$$R_q = Z_q[x] / < x^n + 1 >$$

DISTRIBUTION 1

DISTRIBUTION 2

 a_i

$a_1, b_1 = a_1 s + err_1$		a' ₁ , b' ₁	
$a_2, b_2 = a_2 s + err_2$		a' ₂ , b' ₂	
a_m , $b_m = a_m s + err_m$	VS	a' _m , b' _m	
uniform $\in R_q$, $e_i \sim \varphi \in R$		$a_{i,} b_{i}$ uniform $\in F$	<mark>ہ</mark>

Regev Public Key Encryption Finding short \vec{e} such that $\langle \vec{a}; \vec{e} \rangle = u$ is hard Pseudorandom $*SK: \vec{e} PK: \vec{a}, u$ By R-LWE & Encrypt (PK, m) : $\vec{c}_0 = \vec{a} \cdot s + \vec{e}rr_1$ Small only if $c_1 = u \cdot s + err_2 + m \left| \frac{q}{2} \right| \quad \left($ e is small $c_1 - < \vec{e}; \vec{c}_0 >$ $= u \cdot s + err_2 + m \left| \frac{q}{2} \right| - u \cdot s - \langle \vec{e}; \vec{e}rr_1 \rangle$ $= m \left| \frac{q}{2} \right| + error$

23

Regev Public Key Encryption

 $*SK: \vec{e} PK: \vec{a}, u$

& Encrypt (PK, m) :

$$c_{1} - \langle \vec{e}; \vec{c}_{0} \rangle$$

$$= u \cdot s + err_{2} + m \left\lfloor \frac{q}{2} \right\rfloor - u \cdot s - \langle \vec{e}; \vec{e}rr_{1} \rangle$$

$$= m \left\lfloor \frac{q}{2} \right\rfloor + error$$

24

What's special about this PKE?

Lends Itself to Fully Homomorphic Encryption!

Symmetric key FHE for Quadratic Polynomials (BV11)

s: secret key

Encrypt (s, x₁, x₂): Sample u₁, u₂ randomly in ring. Sample err₁, err₂. Compute :

 $c_1 = u_1 s + err_1 + x_1$ $c_2 = u_2 s + err_2 + x_2$ Evaluate (c₁, c₂, f = x₁ x₂):

Want: Use c_1 , c_2 to compute product ciphertext c_{12} that encrypts $x_1 x_2$

FHE Evaluation

We may write:

 $x_{1} \approx c_{1} - u_{1}s$ $x_{2} \approx c_{2} - u_{2}s$ $\therefore x_{1}x_{2} \approx c_{1}c_{2} - (c_{1}u_{2} + c_{2}u_{1})s + u_{1}u_{2}s^{2}$

Let $c^{\text{mult}} = (c_1 c_2, c_1 u_2 + c_2 u_1, u_1 u_2)$

Given secret key s, and ciphertext c^{mult}, decryptor can recover message up to noise.

Onwards to Functional Encryption

- FHE secret key s permits decryptor to also decrypt original messages x₁ and x₂.
- Wish to constrain decryption so that key holder learns
 x₁x₂ but not individual x₁ and x₂

Recall....

Regev PKE Ciphertext :

 $\vec{c} = \vec{a} \cdot \vec{s} + \vec{e}rr_1$ $c_1 = u_1 \cdot \vec{s} + err_2 + x_1$ $c_2 = u_2 \cdot \vec{s} + err_2 + x_2$

Observe:

• Ciphertext can be split into randomness carrier "c" and message carrier c_1 , c_2 .

Message carrier exactly resembles FHE Symmetric key CT

The Hope

• Switch View to FHE:

• Interpret PKE message carrier components as FHE symmetric key ciphertexts

• FHE Computation:

- Evaluate f on encrypted data using FHE.
- Recover encryption of f(x) $C_f = u_f \cdot s + err_f + f(\vec{x})$
- Switch view back to Regev PKE:

Given randomness carrier and message carrier for f(x), decrypt as in original Regev PKE $\vec{c} = \vec{a} \cdot s + \vec{e}rr_1$

$$c_f = u_f \cdot s + err_f + f(\vec{x})$$

The News (Good and Bad)

- The Bad: Too good to be true
- Want FHE computation to result in a CT

$$c_f = u_f \cdot s + err_f + f(\vec{x})$$

- Instead, CT looks like $c_f = u_{f,ct} \cdot s + err_f + f(\vec{x})$
- The Good: This blueprint works for linear functions
- Given CT(x), SK(y), decryption outputs <x,y>
- We'll leverage linear functions to support deeper circuits

Generalizing to Quadratic (AR17)

• Recall FHE multiplication:

 $x_{1} \approx c_{1} - u_{1}s$ $x_{2} \approx c_{2} - u_{2}s$ $\therefore x_{1}x_{2} \approx c_{1}c_{2} - (c_{1}u_{2} + c_{2}u_{1})s + u_{1}u_{2}s^{2}$

• What if we group the terms differently?

:
$$x_1 x_2 \approx c_1 c_2 - u_2(c_1 s) - u_1(c_2 s) + u_1 u_2(s^2)$$

Functional Encryption for Quadratic polynomials $P(x) = x_1x_2$

Enc(mpk,
$$\vec{x} = (x_1 \dots x_n)$$
):
 $\{c_i = u_i \cdot s + err_i + x_i\}_{i \in [n]}$
LinearFE.Enc $(s^2, c_1 s, \dots c_n s)$

Kgen(msk, P):

LinearFE.KGen $(u_1u_2, -u_2, -u_1, 0, ..., 0)$

Dec(sk_P, ct_x):

LinearFE.Dec $< (s^2, c_1 s, ..., c_n s), (u_1 u_2, -u_2, -u_1, 0, ..., 0) >$ $= u_1 u_2 (s^2) - u_2 (c_1 s) - u_1 (c_2 s)$ $= c_1 c_2 - u_2 c_1 s - u_1 c_2 s + u_1 u_2 s^2 - c_1 c_2$ $\approx x_1 x_2 - c_1 c_2$

Decryptor can compute c_1c_2 itself.

Is this secure?

- Attack: Easily recover s given exact linear equation $u_2(c_1s) + u_1(c_2s) + u_1u_2(s^2)$
- Intuition for fix: Exact linear equations trivial, noisy linear equations intractable

Motto: Add noise!

- Replace linear FE by noisy linear FE.
- This is not a proof!
- New proof technique to show this works

Wrapping it up

- Generalizes to NC₁ via induction
 - Very technical!
 - Need encryptor to provide some extra encodings as "advice"
 - Need to only compute linear function plus noise, i.e. noisy linear FE
- Can use FE for PRG or direct construction to generate noise
- Concurrent work by AJS18 identify similar classes of PRG, incomparable results
- Follow up work by LM18 improves assumption on PRG by handling leakage caused by polynomial bounded PRG

Thank You for your attention ③

Image Credits: Jackson Pollock, who solves similar problems in a different space!