
Walking the Edge between Structure and
Randomness:

The Quest for Indistinguishability Obfuscation

Shweta Agrawal

IIT Madras

Bootstrapping Obfuscation from Noisy Linear FE

Shweta Agrawal

IIT Madras

Indistinguishability Obfuscator iO [BGI+01]

C1 ≡ C2, meaning
• Same size |C1|=|C2|
• Same truth table TB(C1) = TB(C2)

≈iO (C1) iO (C2){ } { }
Quest: Finding an efficient compiler iO

“Which one of two equivalent circuits C1 ≡ C2 is obfuscated?”

2

Does iO exist?

•Direct Constructions
• All based on multilinear maps [GGH13,CLT13,GGH15]
• Same template in all works (all eggs in same basket?)
• Many attacks, fixes, repeat: hard to understand security

•Bootstrapping based constructions

3

Bootsrapping Based Constructions:
Reduce, Reduce, Reduce

• What is the minimum functionality needed for iO?

• How much can we “clean up” assumptions?

• Much progress

• State of art: degree 3 multilinear maps and degree 3 “block
local” pseudorandom generators [LT17].

• Not clear how to instantiate deg 3 maps

4

Can we base iO on anything else?

• Functional Encryption supporting computation of degree ≥ 3
polynomials

• Should be good news except…..
• All constructions of functional encryption themselves based on multilinear

maps 

5

(mpk, msk)  Setup(1n)

Enc(mpk, m):

Kgen(msk, C):

skC

ct

y = C(m)

Dec(skC, ct):

Functional Encryption

ct

skC

6

The State of Affairs
• Using bilinear maps, have FE for degree 2 polys

• For iO, need FE for degree (at least) 3 polys

• Where does degree 3 come from?

• Arithmetic degree required to compute a PRG.

7

seed G(seed)

Random Pseudorandom

Pseudorandom
Generator

PRG G

Expansion/stretch: Difference in output and input lengths, i.e |G(seed)| - |seed|

The State of Affairs

• Need FE to compute G(seed).

• Represent G as polynomial.

• G associated with pair (L,E) where poly of degree L is required to
compute PRG of expansion E.

8

skG

CT(seed)

y = G(seed)

FE for NC1

iO for P/Poly

Uses randomizing

polys [AIK11, LV16]

[LT17, Lin17, AS17]

[AJ15, BV15, BNPW16]

Lin-Tessaro, Crypto 17

Previously….

FE for NC0

PRG of Deg L,

Exp E
FE for deg L poly

Bootstrapping,
determines
Exp E

Exists for deg 2 using
bilinear maps
[Lin17,BCFG17]

(2, E) possible?

Recall, G associated with (L,E)

The State of Affairs

• All works use randomizing polynomials for bootstrapping.

• Necessitates Boolean PRG with expansion E.

• Previously, Lin-Tessaro conjecture PRG with degree 2 and
expansion E

• LV17, BBKK17 show that degree 2 impossible for expansion E
• Narrow margin of expansion E’ left open by attacks

• But not clear how to use this to build iO.

10

PK FE for PRG SK FH FE for CNG
Direct

Construction

Noisy Linear FE

FE for NC1

LWE/RLWE

Uses special “FE-compatible”

FHE of [AR17]

New Abstraction to build iO [A19]

Three different
ways to instantiate
abstraction.

New
hardness

conjectures

Sidesteps
lower
bound

New PRG
familiesIntroduce CNG

Introduce non

Boolean PRG
Boolean PRG

lower expansion

Noisy Linear FE: The right abstraction ?

• Recall Linear FE [ABDP15,ALS16]: Enc(x), Keygen(y), Decrypt to get <x,y>.

• Possible from standard assumptions – DDH, LWE, QR

• Noisy Linear FE : Enc(x), Keygen(y), Decrypt to get <x,y> plus noise

• Where does noise come from?

• What security properties does it need to satisfy?

• Going in circles ?

12

Fundamental
primitive in
FE. Addition
most basic!

A key new observation:
Computing a noise term is easier

as exact value not important

Noise must satisfy only
mild statistical

properties

Need not be Boolean, as
no need for randomized

enc

Weakening requirements on PRGs

Advantage 1: Relax requirements on PRGs

• Boolean: make do with lower expansion E’ which is not ruled out

• Non-Boolean PRGs: Two new classes of randomness generators
• Need not be Boolean: save degree blowup (caused by arithmetization)

• Satisfy much weaker property than pseudorandomness

• May be computable with lower degree

• How to instantiate these PRGs?

13

Won’t have time
to talk about

this

• Noisy linear FE is used black box in
bootstrapping

• Bootstrapping uses LWE.

• Noisy linear FE may use any assumption
• In one instance, mix of pairings and lattices. Uses

best of both.

Advantage 2: Permits Mixed Assumptions

14

Garuda: Mythical Indian character
Half eagle, half man.

• Previously FE for degree L FE for NC0  FE for NC1 iO

• Can bootstrap to FE for NC1 directly.

Noisy Linear FE  FE for NC0  FE for NC1 iO

 FE for degree L FE for NC0  FE for NC1 iO

• More efficient

Advantage 3: More Efficient

15

• Previously, all direct constructions use same template:
• Fix plaintext matrix branching program

• Add randomization layers: diagonal padding, random scalars, Kilian
randomization

• Encode randomized matrices using one of three mmap families

• All eggs in same basket

• Noisy linear FE can be constructed without multilinear, or even bilinear
maps!

Advantage 4: Permits New Direct Constructions

16

A key new observation: Old grandma advice!

17

If you cannot have
what you want, you
must learn to want
what you can have

Advantage 4: Permits New Direct Constructions

A key new observation: Relax requirement on correctness!

18

If you cannot compute
what you can use, you
must learn to use what

you can compute

• Only <x,y> needs to be correct! G(seed) is allowed some corruption

• So far: Assume polynomial is PRG and insist on computing it exactly

• Here: Compute whatever can be computed and check if it can satisfy PRG
like properties

19

CT (x, seed)

sky,G

sky,G

CT(x, seed)

<x,y> + G’(seed’)

A key new observation: Relax requirement on correctness!

• Extend LWE based Linear FE of ALS16 to Noisy Linear FE using
new hardness conjectures on lattices.

• Unrelated to multilinear map assumptions (modulo
mathematical structure)

• May be more robust. May be post-quantum.

• Much simpler to analyse than mmap based direct
constructions: no need for straddling sets, Kilian randomization
etc used by all prior work

• First construction of nonlinear FE without any maps.

• Philosophically similar idea used in follow-up [JLMS19]
20

Caution:
Needs more
cryptanalysis

Advantage 4: Permits New Direct Constructions

Bootstrapping Functional Encryption
Noisy Linear FE  FE for NC0  FE for NC1 iO

21

Ring Learning with Errors Problem

Let ring

22

vs

Sample s uniformly in Rq

a1 , b1 = a1 s + err1

a2 , b2 = a2 s + err2

am , bm = ams+ errm

ai uniform Rq , ei ~ϕ R  

Rq  Zq[x]/  xn 1

DISTRIBUTION 1

ai, bi uniform Rq

a’1 , b’1

a’2 , b’2

a’m , b’m

DISTRIBUTION 2

Regev Public Key Encryption

Finding short such that is hard

SK : PK :

Encrypt (PK, m) :

Decrypt (SK) :

Small only if
e is small

23

e a,u

0 1

1 2
2

c a s err

q
u ec s rr m

  

  
 
 





1 0

2 1

;

;
2

2

e c

q
u s err m s e err

q
m error

c

u

 

 
        

 

 
  

 





;e ua  e

Pseudorandom
By R-LWE

Regev Public Key Encryption

SK : PK :

Encrypt (PK, m) :

Decrypt (SK) :

Message
encoding

24

0 1

1 2
2

c a s err

q
u ec s rr m

  

  
 
 





Randomness
encodinge a,u

1 0

2 1

;

;
2

2

e c

q
u s err m s e err

q
m error

c

u

 

 
        

 

 
  

 





What’s special about this PKE?

25

Lends Itself to Fully Homomorphic
Encryption!

Symmetric key FHE for Quadratic Polynomials (BV11)

26

c1  u1s  err1  x1

c2  u2s  err2  x2

Encrypt (s, x1, x2):
Sample u1, u2 randomly in ring. Sample err1, err2.
Compute :

Evaluate (c1, c2, f = x1 x2):

Want: Use c1, c2 to compute product ciphertext c12

that encrypts x1 x2

s: secret key

FHE Evaluation

27

x1  c1  u1s

x2  c2  u2s

x1x2  c1c2  (c1u2  c2u1)s  u1u2s
2

We may write:

Let cmult = (c1 c2, c1 u2 + c2 u1, u1u2)

Given secret key s, and ciphertext cmult,
decryptor can recover message up to noise.

Onwards to Functional Encryption

• FHE secret key s permits decryptor to also decrypt
original messages x1 and x2.

• Wish to constrain decryption so that key holder learns
x1x2 but not individual x1 and x2

28

Recall….

29

1

1 1 2 1

2 2 2 2

c a s err

u s err x

u s err x

c

c

  

   

   

Regev PKE Ciphertext :

Observe:

• Ciphertext can be split into randomness carrier “c” and
message carrier c1, c2.

• Message carrier exactly resembles FHE Symmetric key CT

The Hope

• Switch View to FHE:
• Interpret PKE message carrier components as FHE symmetric key ciphertexts

• FHE Computation:
• Evaluate f on encrypted data using FHE.

• Recover encryption of f(x)

30

()f f fu s err fc x   

• Switch view back to Regev PKE:
Given randomness carrier and message carrier for f(x), decrypt as in original
Regev PKE

1

()f f f

c a s err

uc s err f x

  

   

The News (Good and Bad)
• The Bad: Too good to be true

• Want FHE computation to result in a CT

• Instead, CT looks like

• The Good: This blueprint works for linear functions

• Given CT(x), SK(y), decryption outputs <x,y>

• We’ll leverage linear functions to support deeper circuits
31

()f f fu s err fc x   

, ()f f ct fu sc err f x   

KeyGen
needs but

cannot know
LWE label

Generalizing to Quadratic (AR17)

• Recall FHE multiplication:

32

x1  c1  u1s

x2  c2  u2s

x1x2  c1c2  (c1u2  c2u1)s  u1u2s
2

• What if we group the terms differently?

x1x2  c1c2  u2(c1s) u1(c2s) u1u2(s2)

Enc(mpk, 𝑥 = (𝑥1 … . . 𝑥𝑛)):

Kgen(msk, P):

Dec(skP, ctx):

Functional Encryption for Quadratic polynomials P(x) = x1x2

33

[]{ }i i i i i nu s err xc    

LinearFE.Enc(𝑠2, 𝑐1 𝑠, … . 𝑐𝑛 𝑠)

LinearFE.KGen (𝑢1𝑢2, −𝑢2, −𝑢1, 0, . . , 0)

LinearFE.Dec

< 𝑠2, 𝑐1 𝑠, … . 𝑐𝑛 𝑠 , 𝑢1𝑢2, −𝑢2, −𝑢1, 0, . . , 0 >

2

1 2 2 1 1 2

2

1 2 2

1 2

1 1 2 1 2 1 2

1 2

()()) (u u s u c u c s

c c u c u c s u u s c cs

x c

s

x c

 





 

  

Decryptor can compute c1c2 itself.

Is this secure?

• Attack: Easily recover s given exact linear equation

• Intuition for fix: Exact linear equations trivial, noisy linear
equations intractable

u2(c1s) u1(c2s) u1u2(s2)

Motto: Add noise!

• Replace linear FE by noisy linear FE.
• This is not a proof!
• New proof technique to show this works

34

Wrapping it up

• Generalizes to NC1 via induction

• Very technical!

• Need encryptor to provide some extra encodings as “advice”

• Need to only compute linear function plus noise, i.e. noisy linear FE

• Can use FE for PRG or direct construction to generate noise

• Concurrent work by AJS18 identify similar classes of PRG,

incomparable results

• Follow up work by LM18 improves assumption on PRG by

handling leakage caused by polynomial bounded PRG
35

Walking the Edge between Structure and
Randomness:

The Quest for Indistinguishability Obfuscation

Shweta Agrawal

IIT Madras

Thank You for your attention 

Image Credits: Jackson Pollock, who solves
similar problems in a different space!

