
Secure	storage	in	the	cloud	using	property	
preserving	encryption	
	
	
Kenny	Paterson	

Information	Security	Group	

Overview	

1.  Application	scenarios.	
2.  Deterministic	encryption	and	search.	

3.  OPE/ORE	and	range	queries.	

4.  Analysing	access	pattern	leakage	from	range	
queries.	

2	

Application	scenarios	

Application	Scenarios	

4	

•  Data	owners	wish	to	securely	outsource	storage	to	cloud	providers	whilst	
preserving	capability	for	users	to	query	data	in	various	ways.	

•  What	kinds	of	queries?	

•  What	kinds	of	users?		

•  What	kinds	of	data?	

•  What	kinds	of	query?	

•  What	kinds	of	adversary?	

•  Meta:	Why	not	just	use	FHE	and	be	done?	

Two	scenarios,	one	picture	

5	

Scenario	1:	Searchable	File	Storage	

6	

•  Owner	has	large	collection	of	files,	indexed	by	keywords.	

•  Owner	encrypts	files	and	stores	these	on	remote	server.	

•  Owner	encodes	keywords	in	such	a	way	that	keyword	searches	can	
still	be	carried	out.	

•  Encoded	keywords	also	stored	on	server,	as	an	encoded	index.	

•  Owner	sends	search	token	to	server;	server	uses	token	and	index	to	
find	identifiers	for	matching	files.	

•  Matching	file	identifiers	are	returned	to	owner.	

Scenario	2:	Database	Encryption	

7	

•  Data	owner	has	a	large	database	of	records;	each	record	has	
multiple	fields.	

•  Owner	encrypts	data	in	each	field	in	such	a	way	that	standard	
database	queries	can	still	be	carried	out.	

•  Basic:	simple	searches.	
	-	“Give	me	all	records	in	which	surname	=	Dubois”.	

•  Advanced:	compound	searches.	
•  More	advanced:	range	queries	

	-	“Give	me	all	records	with	ages	between	21	and	30”.	
•  Finally:	arbitrary	SQL	queries.*	

	 	 	 		
	

	 	 	 	 	 	 	 	 	*Other	db	query	languages	are	available.	

Searchable	Encryption	

8	

Solution	for	Scenario	1:	Searchable	Encryption.	

•  Naïve	scheme:	owner	uses	IND-CPA	symmetric	encryption	for	files	and	
PRFK(kw)	as	encoding	of	keyword	kw.	

•  Store	encrypted	files	and	encoded	keywords	per	file	on	server.	

•  Owner	sends	tok	=	PRFK(kw)	to	server;	server	matches	tok	against	encoded	
keywords;	returns	matching	files.	

•  Can	use	an	inverted	index	and	file	identifiers:	server	stores	database	of	
tuples	(tok,	(fid1,	fid2,….)).	

Security	Analysis	

9	

•  Adversarial	objectives?		
-  Keyword	recovery,	recovery	of	file	contents,…	?	

•  Adversarial	capabilities?		
-  “Snapshot”,	“Honest-but-curious”,	“Fully	malicious”.	
-  Can/cannot	observe	queries;	can/cannot	make	queries;	can/cannot	inject	files.	

	
•  What	about	auxiliary	information?		

-  What	if	the	adversary	has	a	representative	data	sample	or	keyword	sample?	
	
•  Cash	et	al.	(CCS15):	detailed	analysis	of	different	attacks	models,	leakage	

profiles,	etc.	against	SE	schemes	in	general:	Leakage	Abuse	Attacks.	
•  Fuller	et	al.	(S&P17):	SoK	paper	on	cryptographically	protected	database	

search.	

	

Two	scenarios,	one	picture	

10	

Deterministic	Encryption	

11	

Partial	solution	for	Scenario	2:	DE	

•  Simplest	possible	scheme:	owner	uses	deterministic	encryption	scheme	(KGen,	
Enc,	Dec)	to	encrypt	each	column	of	the	database	using	a	per-column	key	K.	

•  Server	can	store	the	encrypted	data	on	server	in	a	traditional	database.	

•  To	find	matches	with	value	x	in	a	column,	send	search	query	for	y	=	EncK(x)	to	
server.	

•  Server	finds	matches	on	y	and	returns	full	encrypted	records	to	client.	

•  Client	decrypts	returned	records	using	per	column	keys.	

•  Use	of	DE	preserves	equality	of	plaintexts	and	allows	simple	searches.	

•  (Very	similar	to	naïve	SE,	with	PRF	replaced	by	Enc/Dec).	

Property	Preserving/Revealing	Encryption	(PPE/PRE)	

12	

More	general	solution	for	Scenario	2:	PPE/PRE	

•  Generalises	idea	of	“equality	preserving/revealing”	property	of	DE.	

•  Main	example:	Order	Preserving/Revealing	Encrypion	(OPE/ORE).	

•  OPE:	if	x	<	y	then	Enc(x)	<	Enc	(y).	

•  ORE:	there	exists	a	(public)	efficiently	computable	function	“Order”	such	that:	
	 	 	 		 		
	 	 	 	 	x	<	y			iff			Order(Enc(x),	Enc(y))	=	1		
	 	 	 	 	 		

•  OPE/ORE	allows	range	queries!	

•  Client	who	wishes	to	query	on	range	[a,b]	instead	sends	query	for	range	[Enc(a),	
Enc(b)]	to	server.	

Analysis	of	Deterministic	Encryption	

14	

Reminder:	ECB	information	leakage	

Tux	the	Penguin,	the	
Linux	mascot.	Created	
in	1996	by	Larry	Ewing	

with	The	GIMP.	
lewing@isc.tamu.edu	

	

ECB-Tux	
	

Analysis	of	Deterministic	Encryption	

•  DE	is	equality	preserving,	by	design.	

•  DE	therefore	preserves	frequencies	of	plaintexts	in	the	
ciphertexts,	cf.	monoalphabetic	substitution	cipher.	

•  Naveed-Kamara-Wright	(CCS15):	let’s	apply	frequency	
analysis!	(al-Kindi,	9th	century.)	

•  Assumption	1:	attacker	has	auxiliary	information	–	a	
reasonably	accurate	estimate	for	the	plaintext	
distribution.	

•  Assumption	2:	attacker	has	a	snapshot	of	the	
encrypted	database.	

15	

Analysis	of	Deterministic	Encryption	

16	

Frequency	Analysis	is	Maximum	Likelihood!	

•  Given	a	column	of	ciphertexts		y,	frequency	analysis	
matches:	
-  Most	frequent	item	in	y	with	most	frequent	item	in	aux.	dist.	

-  Second	most	frequent	item	in	y	with	second	most	frequent	item	
in	aux.	dist.	

-  etc.	
•  Defines	a	permutation	π	mapping	plaintexts	x	to	
ciphertexts	y.	
•  This	procedure	is	maximum	likelihood,	that	is,	it	
maximises	the	likelihood		
	 	 	 	 	 	L(π	|	y)	:=	Pr	(y	|	π).	

•  Proof:	fun	exercise,	see	also	eprint	2015/1158.	
17	

Performance	of	Frequency	Analysis	Against	DE	

•  Naveed-Kamara-Wright	[CCS15]	performed	an	empirical	
investigation	of	the	performance	of	frequency	analysis	against	DE.	

•  Using	a	large	medical	dataset:	per-patient	data	in	12	categories	for	
200	largest	hospitals	in	the	2009	Nationwide	Inpatient	Sample	(NIS),	
from	the	Healthcare	Cost	and	Utilization	Project	(HCUP),	run	by	the	
US	Agency	for	Healthcare	Research	and	Quality.	

•  DE	encrypt	data	per	hospital	for	each	category.	
•  Use	2004	aggregated	HCUP	data	as	the	auxiliary	data.		
•  Run	frequency	analysis	and	measure	percentage	of	data	items	

correctly	recovered	per	hospital.	

18	

Performance	of	Frequency	Analysis	Against	DE	

19	

Performance	of	Frequency	Analysis	Against	DE	

20	

Performance	of	Frequency	Analysis	Against	DE	

21	

Frequency	Analysis	Makes	Headlines!	

22	

Combatting	Frequency	Analysis	

•  We	want	to	smooth	out	frequency	distribution	so	that	frequency	
analysis	becomes	ineffective.	
•  Performing	worse	than	random	guessing	of	plaintext.	

•  We	also	want	to	preserve	ability	to	efficiently	perform	search	queries	
on	a	standard	database.	
•  Rules	out	fully	randomised/IND-CPA	secure	encryption.	

•  What	about	adding	a	limited	amount	of	randomness?	

•  Leads	to	idea	of	applying	homophonic	encoding	to	produce	
Frequency	Smoothing	Encryption	(FSE)	schemes	(Lacharité-
Paterson,	forthcoming).	

23	

p	
DE	

e0	

e1	
e2	

e3	

c1	
c3	

c2	

c0	

HE	

Frequency	Smoothing	Encryption	–	Combatting	
Frequency	Analysis	

24	

Plaintext	 Encodings	 Ciphertext	

•  Homophonic	Encoding	(HE)	consumes	small	amount	of	randomness.	

•  Make	number	of	encodings	proportional	to	frequency	of	p	for	good	frequency	smoothing.	

•  DE	=	Deterministic	Encryption.	

•  Match	on	{c1,	c2,	c3,	c4}	instead	of	a	single	ciphertext.	

•  Query	complexity	blow-up	by	max.	number	of	encodings	in	worst	case.	

Interval-based	Homophonic	Encoding	(IBHE)	

•  Encoding	space		=	r-bit	strings	/	interval	[0,2r).	

•  Represent	encodings	of	p	having	frequency	f	by	an	interval	of	
size	approximately	f	x	2r.	

•  Select	uniformly	at	random	from	interval	to	encode	p.	

•  Needs	an	encoding	table	to	store	an	interval	for	each	plaintext	
item;	|p|	x	2r	bits.	

•  Also	needs	a	decoding	table	mapping	bits	back	to	plaintexts.	

25	

0	

p0	 p1	 p2	 p3	 ….	

2r-1	

Effectiveness	of	FSE	from	IBHE	+	DE		

•  Can	prove	that	as	r	goes	to	∞,	no	distinguisher	can	tell	
apart	ciphertexts	from	uniformly	random	strings.	

•  But	even	for	moderate	r,	IBHE	+	DE	smooths	well	for	all	
but	very	skewed	data.	

•  Rapidly	limits	(generalised)	frequency	analysis	to	being	
worse	than	a	pure	guessing	attack.	
•  Such	an	attack	is	always	possible	for	limited	domain	of	plaintexts.	

•  We	used	same	evaluation	framework	as	Naveed-Kamara-
Wright	(CCS15).	
•  Except	that	we	gave	the	adversary	the	exact,	per-hospital	

distribution	as	the	auxiliary	distribution!		

26	

Effectiveness	of	FSE	from	IBHE	+	DE		

27	

Effectiveness	of	FSE	from	IBHE	+	DE		

28	

Effectiveness	of	FSE	from	IBHE	+	DE		

• Warning:	FSE	only	protects	against	a	basic	snapshot	
attacker.	

•  Recent	work	of	Grubbs-Ristenpart-Shmatikov	
(HotOS17)	questions	legitimacy	of	snapshot	attack	
model.	

•  Columns	are	treated	in	isolation.	

• More	powerful	adversary	could	perform	frequency	
analysis	on	the	sets	of	responses	to	queries.	

•  Scheme	does	not	protect	against	an	active	attacker	
who	can	inject	his	own	queries.	

29	

Analysis	of	OPE/ORE	

Order	Preserving/Revealing	Encryption	

31	

•  OPE:	if	x	<	y	then	Enc(x)	<	Enc	(y).	

•  ORE:	there	exists	a	(public)	efficiently	computable	function	
“Order”	such	that:	
	 	 	 		 		
	 	 	 	 	x	<	y			iff			Order(Enc(x),	Enc(y))	=	1		
	 	 	 	 	 		

•  OPE/ORE	allows	range	queries.	

•  Client	who	wishes	to	query	on	range	[a,b]	instead	sends	query	
for	range	[Enc(a),	Enc(b)]	to	server.	

Order	Preserving/Revealing	Encryption	

32	

•  Q:	If	DE	leaks	badly,	does	OPE/ORE	leak	even	more?	

•  A:	Often,	yes.	

•  Folklore:	if	OPE	scheme	is	deterministic	and	plaintext	data	is	
dense	(every	possible	plaintext	occurs)	then	a	snapshot	
adversary	can	learn	which	plaintext	is	which.	

•  Simply	order	the	ciphertexts	and	then	read	off	the	plaintexts.	

•  Take-away:	beware	of	formal	security	models	for	OPE/ORE.	

•  This	can	sometimes	be	generalised	to	the	non-dense	case…	

The	Scheme	of	Chenette-Lewi-Weis-Wu	(FSE16)	

33	

•  CLWW	(FSE16)	presented	a	clever	and	practical	ORE	scheme	
built	using	only	PRFs.	

•  CLWW	gave		a	precise	characterisation	of	leakage	in	a	
simulation-based	security	model:	

•  Given	two	ciphertexts	Enc(x)	and	Enc(y),	the	scheme	leaks	exactly	the	
first	index	at	which	bits	of	x	and	y	differ	(and	which	is	bigger).	

•  Example:	given	Enc(x	=	11012)	and	Enc(y	=	10012),	the	scheme	
would	leak	that	the	two	plaintexts	are	equal	in	MSB	(bit	0)	but	
that	the	first	one	has	1	in	bit	1	and	the	other	0	in	bit	1.	

•  Leakage	is	greater	than	in	an	ideal	OPE	scheme,	which	would	
leak	only	order.	

An	Attack	on	the	CLWW	Scheme	

34	

•  In	the	dense	case,	the	folklore	analysis	applies.	
•  What	about	the	non-dense	case?	

•  Assumption	1:	snapshot	attacker.	

•  Assumption	2:	N	plaintexts,	close	to	uniformly	random	on	the	s	
MSBs,	where	N	>	s2s.	

	

Then,	with	high	probability,	the	attacker	can	learn	the	s	most	
significant	bits	of	every	plaintext.	

An	Attack	on	the	CLWW	Scheme	

35	

•  Assumption	1:	snapshot	attacker.	

•  Assumption	2:	N	plaintexts,	close	to	uniformly	random	on	the	s	
MSBs,	where	N	>	s2s.	

	

•  Second	assumption	implies	that,	with	high	probability,	every	
possible	s-bit	prefix	occurs	in	at	least	one	plaintext:	

	 	 	 	 	 	Prob	≈	1	–	2-s/2^(s+1).	

•  Use	the	CLWW	scheme’s	leakage	to	order	the	N	ciphertexts	on	
the	2s	distinct	s-bit	prefixes.	

•  Now	read	off	the	s	most	significant	bits	of	each	plaintext.	

Implications	of	the	Attack	

36	

•  Suppose	a	company	has	10,000	employees	with	salaries	that	
are	20-bit	numbers	(between	$0	and	$220-1).	

•  We	can	set	s	=	10	(10	x	210	≈	10,000).	

•  Attack	yields	10	MSBs	of	every	salary.	

•  This	is	enough	to	identify	each	salary	up	to	accuracy	of	$1k.	

•  Example	generalises	to,	say,	32-bit	salaries	that	are	all	zero	in	
the	first	12	bit	positions.	

•  Sufficient	that	data	be	dense	in	some	positions	(and	constant	in	
leading	positions).	

Further	Research	on	OPE/ORE	Leakage	

37	

Several	attack	recent	papers	examine	the	real-world	implications	
of	the	leakage	of	OPE/ORE	schemes	for	snapshot	attackers:	

•  Durak-DuBuisson-Cash	(CCS16):	attacks	on	correlated	
columns	of	OPE/ORE-encrypted	data,	especially	longitude/
latitude	data.	

•  Grubbs-Sekniqi-Bindschaedler-Naveed-Ristenpart	(S&P17):	
revisit	Naveed-Kamara-Wright	for	OPE/ORE;	recast	ptxt/ctxt	
matching	problem	as	min-weight,	non-crossing	bipartite	
matching	problem,	solve	it	efficiently	for	many	types	of	data,	
relies	on	auxiliary	distributions.	

	

Access	Pattern	Leakage	for	Range	Queries	

Analysis	of	Access	Pattern	Leakage	for	Range	Queries	

39	

Kellaris-Kollios-Nissim-O’Neill	(CCS16):	analysis	of	access	
pattern	leakage	for	SE;	applicable	to	OPE/ORE	schemes	too.	

•  Honest-but-curious	attack	setting,	stronger	than	snapshot	
adversary.	

•  Assumption:	adversary	can	see	which	database	rows	are	
returned	in	response	to	any	range	query.	

•  For	N-valued	database,	complete	reconstruction	in	O(N4)	
queries.	

•  For	dense	case:	O(N2logN)	queries	suffice.		

Analysis	of	Access	Pattern	Leakage	for	Range	Queries	

40	

•  Adversary	in	KKNO	(CCS16)	does	not	need	to	directly	see	the	
actual	ranges	queried.	
-  In	OPE/ORE,	adversary	would	see	only	ciphertexts	Enc(x),	Enc(y)	

corresponding	to	range	endpoints.	

-  But	in	OPE/ORE	setting,	and	in	some	SE	schemes*,	the	rank	also	leaks.	

-  The	rank	of	a	ciphertext	is	its	position	in	an	ordered	list	of	all	the	
ciphertexts.	

	

	
*e.g.	Arx	scheme	of	Poddar-Boelter-Popa	and	FH-OPE	scheme	of	Kerschbaum.	

Exploiting	Rank	in	Analysis	of	Access	Pattern	Leakge	

41	

•  Can	we	use	the	rank	leakage	to	improve	attack	complexity?	

•  Lacharité-Minaud-Paterson	(forthcoming):	

•  Yes!	
•  And	much	more	besides…	

Exploiting	Rank	in	Analysis	of	Access	Pattern	Leakge	

42	

Simple	motivating	example:	consider	range	queries	[a,b]	in	
which	a	is	uniformly	random.	

•  Then	with	probability	1	–	1/N,	after	2NlogN	queries,	all	N	possible	
values	for	a	will	have	arisen.	
•  Follows	from	standard	analysis	of	the	coupon	collector	problem.	

•  Easy	to	identify	and	order	different	a	values	based	on	rank	
leakage.	

•  All	values	of	a	in	queries	are	now	known.	

•  Pick	out	N	queries	with	distinct	values	of	a;	each	such	query	
produces	a	set	of	responses	Ya		(records	in	database).	

•  Then	the	set	of	records	with	value	a	is:			Ya	–	Ui	>a		Yi	.	

Exploiting	Rank	in	Analysis	of	Access	Pattern	Leakge	

43	

Y0	

Y1	

Y2	

0	 1	 2	 N	

….	

a:	 N-1	N-2	

Y0	–	Ui	>0Yi	

Y1	–	Ui	>1Yi	

YN-1	–		YN	

YN-2	–	Ui	>1Yi	

YN	

Improved	Analysis	of	Access	Pattern	Leakge	

44	

•  Our	simple	example	appears	to	show	that	rank	leakage	helps	
the	adversary.	

•  In	fact,	we	can	dispense	with	rank	leakage	and	obtain	an	
NlogN+O(N)	attack	in	the	general	“dense”	case!	

-  Improving	on	KKNO’s		O(N2logN)	attack.	

•  We	also	consider	the	problem	of	approximate	reconstruction.	

•  We	can	efficiently	reconstruct	values	in	records	up	to	an	
absolute	error	of	εN	after	seeing	only	O(N)	queries!	

- With	a	constant	of	2log(1/ε).	

Improved	Analysis	of	Access	Pattern	Leakge	

45	

Finally,	we	study	algorithms	for	approximate	reconstruction	
with	the	assistance	of	rank	and	an	auxiliary	distribution.	

•  Significant	reduction	in	number	of	queries	required	for	accurate	
reconstruction.	

•  Perform	set	intersections	and	then	map	back	to	underlying	
data	using	rank	+	auxiliary	distribution.	

•  Experiments	with	aggregated	HCUP	data…	

Approximate	Reconstruction	with	Auxiliary	Distribution	

46	

Concluding	Remarks	

Concluding	Remarks	

•  Use	DE/OPE/ORE	with	extreme	care	if	at	all.	

• We	are	currently	in	a	propose/break/patch	cycle.	

•  Despite	the	provision	of	security	models	and	proofs.			

•  Just	identifying	and	proving	leakage	is	not	enough;	we	
need	to	also	identify	real-world	implications	of	that	
leakage.	

•  Does	PPE	provide	added	security	or	a	false	sense	of	
security?	

48	

