
White-box Cryptomania
Pascal Paillier

CryptoExperts

ECRYPT NET Workshop on Crypto for the Cloud &
Implementation – Paris, June 27-28 2017



Overview

1 � What is white-box crypto?

2 � White-box compilers for signatures

3 � White-box cryptomania

4 � Conclusion: the lesson to learn

5 � News from the front: the WhibOx Contest



What is white-box crypto?

The concept



What is NOT white-box crypto?

General purpose obfuscation

� from any program P, generate an obfuscated program O(P)

� hide any program property π in the code of O(P)

� meaning: the code of O(P) ≈ a black-box oracle that runs P

How realistic is obfuscation?

� very strong requirements on the compiler O

� known impossibility results (Barak et al, etc)



What is white-box crypto?

6= general program obfuscation!

White-box cryptography

� considers programs in a restricted class

programs(f ) where f = some keyed function

� hides some program properties π in the code (but not all)

� code ≈ a black-box oracle only in some adversarial contexts

� already provably secure constructions for some f

� no impossibility results so far for f = blockcipher

� but no secure construction for e.g. f = AESk(·), k ← $



Overview

1 � What is white-box crypto?

2 � White-box compilers for signatures

3 � White-box cryptomania

4 � Conclusion: the lesson to learn

5 � News from the front: the WhibOx Contest



White-box compilers for signatures

Let Σ = (KeyGen,Sign,Verif ) be a public-key signature scheme.

Definition

A white-box compiler CΣ takes a key pair (sk, pk) ∈ KeyGen and
some index r ∈ R and outputs a program CΣ(sk, pk , r) = [Signrsk ].

Huge behavioral differences between

function Sign(·, ·) oracle Sign(sk , ·) program [Signrsk ]
analytic description or
algorithmic description

remote access,
input/output only,
typically stateful,
private randomness

word in a language,
stateless since rebootable,
copiable, transferable,
observable, modifiable,
system calls simulatable

(specification) (smart card) (executable software)



A basic scheme: Schnorr signatures

Pick some G = 〈g〉 of order q.

KeyGen(1κ) Sign(sk ,m) Verif (pk,m, (s, c))

x ← Zq

y = g x
k ← Zq

c = H(m, gk)
s = k−cx mod q

H(m, g sy c) = c?

� Existentially unforgeable in the ROM under the DL problem

� Known impossibility results in the SM



Schnorr signing programs

[Signrsk ] =



Schnorr signing programs

[Signrsk ] =



Schnorr signing programs

We intercept the call to the random source and put what we want

Then given the output (s, c)

x =
k − s

c

This is a trivial break.

Schnorr signatures are not securely implementable as such

k = PRNG(m) not good enough either

k = PRNG(m, x) seems ok.



Overview

1 � What is white-box crypto?

2 � White-box compilers for signatures

3 � White-box cryptomania

4 � Conclusion: the lesson to learn

5 � News from the front: the WhibOx Contest



White-box cryptomania

It’s the world where [Signrsk ] is safe and cozy.

What do we mean by that?

A does not exist unless inefficient.

Finally we have tamper-proof software for the Cloud!!



Security notions for signatures

α⇐ β: if β can be broken, α can be broken

UBK-KOA ⇒ UUF-KOA ⇒ EUF-KOA
⇓ ⇓ ⇓

UBK-KMA ⇒ UUF-KMA ⇒ EUF-KMA
⇓ ⇓ ⇓

UBK-CMA ⇒ UUF-CMA ⇒ EUF-CMA

But that’s not sufficient to capture attack on programs.

Let’s introduce known program attacks



Known program attacks

UBK-KPA:



A first observation

We have a reduction UBK-KPA ⇐ UBK-CMA :



Equivalence CMA/KPA

In white-box cryptomania, we should loose nothing when switching
from CMA to KPA.

It means there must be a reduction in the other direction:

Now UBK-KPA = UBK-CMA :)



Program-reconstructing meta-reduction

We see that we can build a meta-reduction!



Program-reconstructing meta-reduction

... but the public-key given by R might be different from pk



Algebraic programs

“Algebraicity” over G:

Huge class of algorithms, extends generic model



Repairing the biased program

If R is algebraic then we can extract the coefficients in

pk ′ = y ′ = gαyβ

so that given a program output (s ′, c ′) on m, we have

c ′ = H
(
m, g s′y ′c

′
)

= H
(
m, g s′gαc ′yβc

′
)

If we

� pose s = s′+αc ′

β and c = c ′ and
� assume that generator g can be put into the public key pk,

then the program can be “repaired” into a signing program wrt the
key pair (sk, pk) since

c = H
(
m,

(
gβ

)s (
yβ

)c)
pk = (g , y) ' (gβ, yβ)



The effect of white-box cryptomania

To summarize, white-box cryptomania gives us an efficient
program reconstruction algorithm:



Impact on UUF-CMA

Recall the UUF-CMA game:



Impact on UUF-CMA

Using M, UUF-CMA is now easy to break :(

This is a huge collateral damage of white-box cryptomania,
unavoidable unless we relax our definition of white-box cryptomania



Overview

1 � What is white-box crypto?

2 � White-box compilers for signatures

3 � White-box cryptomania

4 � Conclusion: the lesson to learn

5 � News from the front: the WhibOx Contest



Conclusion: the lesson to learn

White-box crypto is a powerful paradigm

� beside the question of theoretic existence, the range of
applications is immense

� white-box cryptomania is a bit too much: we do not want to
loose the unforgeability properties of public-key signatures

� preferable to leave UBK-CMA and UBK-CPA non-equivalent
to allow some security to subsist for UUF-CMA

This is work in progress

� a lot of questions remain

� can we have the same conclusions for e.g. ECDSA?

� how to relax white-box cryptomania?



Overview

1 � What is white-box crypto?

2 � White-box compilers for signatures

3 � White-box cryptomania

4 � Conclusion: the lesson to learn

5 � News from the front: the WhibOx Contest



News from the front: WhibOx Contest



News from the front: WhibOx Contest


	What is white-box crypto?
	White-box compilers for signatures
	White-box cryptomania
	Conclusion: the lesson to learn
	News from the front: the WhibOx Contest

