Iron: Functional encryption
using Intel SGX

Sergey Gorbunov
University of Waterloo

Joint work with Ben Fisch, Dhinakaran Vinayagamurthy, Dan Boneh.

Motivation

DNA_A
DB = Database of DNA

m) —
G DNA B National Institutes
- of Health

‘_)

amazon |
webservices™

DB

(#¢, CHILD MIND’
INSTITUTE

healthy brain network

FamilyTreeDNA

www.familytreedna.com

Challenges:
1. Ensure privacy of users’ DNA sequences in the DB.
2. Selectively enable services (i.e. computations) over private data in DB

FE to the Rescue

ct = Enc(mpk, DB) .
\ 7" amazon |

webservices™ 4

v

NIH)

National Institutes S kF 2
of Health

Flv\\SAkFl F2

FamilyTreeDNA

www.familytreedna.com

cT
+ } F1(DB)

Sk

mpk, msk

CT

d CHILD MIND

) INSTITUTE
- healthy brain network

CT}
+ F3(DB)

SKes

FE Definition

[Boneh, Sahai, Waters 11]

* (mpk, msk) < Setup(1") Authority (NIH)
e ct & Enc(mpk, X) Data Owner (may not be NIH)
* sk < Keygen(msk, F) Authority

* F(X) < Dec(sk, ct) Service / Data User

FE Security - Informal

e Simulation (SIM):

Adversary given (skgy, skg,, ..., skgy) and Enc(mpk, X), learns only F1(X),
F2(X), ..., Fg(X)

e Indistinguishability (IND):

Adversary given access to (skgy, sKe,, ..., SKgy), cannot distinguish between
Enc(mpk, X,) and Enc(mpk, X;) where F,(X,) = F.(X;) for all i.

FE Security — semi-formal

[BSW11,0'N10]

Real World Tdeal Werld

Previous Results

* FE for Boolean formulas/inner products [GPSWO06, LOSTW10, AFV11,
ABDP15, BJK15, ALS16, KLM+16, BCFG17, ...]
v’ Various assumptions: LWE, pairings, etc.

v Somewhat efficient

 General functions/circuits [GGHRSW 14, ABSV15, Wat16, BKS16,
BNPW16, ...]

x Non-standard assumptions (multi-linear maps, obfuscation)

x Very inefficient [ACLL'15]

N
Can we build an efficient, provably-secure FE scheme

for arbitrary functions from a plausible assumption?

J

Our Results

Thm: We present efficient, provably-secure FE for arbitrary functions

assuming existence of secure hardware (Intel SGX) modules.
v' We model and argue the security under strong simulation notion.
v" No restriction on the complexity of functions: need to be written in C/C++.

v' We demonstrate practical efficiency with a prototype implementation and

benchmark against known crypto FE constructions.

Outline

v" Motivation and our results

e Background on secure hardware (Intel SGX)
* Construction overview

* Proof insights

* Implementation details and performance

Intel SGX Overview

Goal: provide secure execution environment on an untrusted remote host, assuming only security
of a processor enabled with a set of encryption routines (Intel SGX).

Untrusted Host

Container: Memory () Only the CPU is tamper
e Program code 1 . - | safe from the adversary
e Stack User ' ﬂ
* Libraries program/data .
* Internal states CPU
 Datapages | ‘ Standard CPU Logic +
User ” “"— Hardware Module +
\ program/data /:) Encryption Routines (SGX)

(steady state, post-setup) 11

Intel SGX Overview

v Encrypted user-level memory container

 User-level = cannot do syscalls, 10, network communication, etc.
v’ Physically encrypted pages of program code and data in memory
v’ Key is protected on the CPU and cannot be extracted,

encrypts/decrypts container pages before execution

Intel SGX Overview

Property 1: Attestation

A party can verify that it is communicating with a program running in the
encrypted container on a platform associated with a key pair (pk, sk)
Verification wrt a public “measurement” of the program (hash)

Local attestation: two containers running on the same node can attest
each other

Remote attestation: a remote user can attest that a specific program is

running inside a secure container

Intel SGX Overview

o
&l <

pk
Attest(pk, P, Proof,)

Proof,

Memory

User

program P

User
program/data

o

User
program/data

/

Proof, =
Sign(sk, H(P))

éffﬁk, sk

CPU

~

14

Intel SGX Overview

Property 2: Isolated execution

* Confidentiality: “black-box” execution of a program
v Internal state of the program is hidden from adversary

* [ntegrity:
v' Adversary cannot change execution state/data/program,

v' Cannot modify the output of the program on a given input

Intel SGX Overview

e Input X

<
«

ok P(X), Proof

Verify(pk, P(X), Proofpy)

Memory

User
program P

User
program/data

/

16

SGX Formal Algorithms

Setup(1") - (sk, pk)

Load (P) — Proof,
Attest(pk, P, Proof,) - 0/1
Rung, (X) = (P(X), Proofpy,)
Verify(pk, P(X), Proofy,) > 0/1

SGX Initialization and Runtime

Goal: secure verifiable computation outsourcing of a program P on input X.

pk P X
2 Load(P)
—_— Proof,
Attest(pk, P, Proof,)
Sec. channel
x O

P(X), Proofy,

Verify(pk, P(X), Proofpy)

-~

Memory

User

program P

~

= é;ﬂﬁk, sk

P(X), Proofp(x)

CPU

SGX —The Good

* Shielded execution of unmodified Windows apps [BPH14]

e Secure MapReduce computations [SCF+15, DSC+15, OCF+15]
e Secure Linux containers [ATG+16, STT+17]

* An authenticated data feed for smart contracts [ZCC+16]

» Secure distributed data analytics (Spark SQL) [ZDB+17]

 Other CPU manufacturers have their own version of SGX (AMD SEV)
 Easy to use, develop, integrate, etc.

Becoming a building block for many secure applications!

SGX —The Ugly

* Programs running inside encrypted containers are subject to side-
channel attacks:

e Page-fault attacks [XCP15]
* Synchronization bugs [WKPK16]
e Branch shadowing [SLK+17]
e Cache attacks [BMD+17, SWG+17]
* Lots of academic work providing stronger security guarantees and

mitigating SGX side-channels
[CLD16, SLKP16, LSG+16, WKPK16, SLK+17, SGF17].

SGX —The Ugly Cont.

* Intel is trusted for the HW implementation

e Cannot change the working function inside the encrypted container
after it is loaded/attested

* Small working memory (Y90MB)

* No system calls/IO/network communication

System vs Model vs Proof

IPSec

TLS

Signal Private
Messenger

42 BLOCKCHAIN

Disk encryption

22

Outline

v" Motivation and our results

v Background on secure hardware (Intel SGX)
* Construction overview

* Proof insights

* Implementation details and performance

Our Construction

(simplified)

Building blocks:
* SGX (on data user node)
 public-key encryption (p.setup, p.enc, p.dec)

* signature scheme (s.setup, s.sign, s.verify)

Our Construction

(simplified)
F
5 mpk .
ata « Authority k Data User
Owner K .
Enc(mpk, X) = ct Setup(1%) = (mpk, msk) Dec(sk, ct) = F(X)
1) p.enc(pkp, X) = ct 1) s.setup(1¥) — (vk,, sk,) (next slide)

2) p.setup(1¥) = (pk,, sk))
3) mpk=(pk,, vk), msk = (sk, sk

Keygen(msk, F) — sk
1) s.sign(sk,, F) = sk

25

Dec(ske, ct) = F(X):

(Authority \ F / Data User \

« Problems:
msk = (sk, sk) sk ct,
" | mpk=(pk,, pk,) 1) Enc. container
cannot talk
< Attest /SGX Encryptedﬂ over network?
§ec. channe] Container
d 2) Which function
Skp e Verify sk :
> Y SK to attest in enc.
0 Dyt container?
e Qutput F(X)
N Y, \&)

Dec(ske, ct) = F(X):

(Authority \

msk = (sk., sk)

F

sk

A

Attest

Sec. channel

sk d

o,

-

fz—:cm @)

Data User

ct, mpk = (pk, pk;)

/SGX Encryptedﬂ

Container

* Verify sk;
* Decrypt X

& Output F(@

N

1) Enc. container

cannot talk
over network?

v

27

Dec(ske, ct) = F(X):

(Authority \

msk = (sk., sk)

F

sk

A

Attest

Sec. channel

sk d

o,

-

KZ—I(A o

Data User

ct, mpk = (pk, pk;)

/SGX Encryptedﬂ

Container

* \Verify sk;
* Decrypt X

N

& Output F(@

2) Which function
to attest in enc.
container?

Define: P(mpk, ct, sk¢):

1) Establish secure
channel

2) Verify sk.

3) Decrypt X

4) Output F(X)

Load and attes®

28

Dec(ske, ct) = F(X):

(Authority \

msk = (sk., sk)

2) Which function
to attest in enc.

CcO

ntainer?

v

A

sk
" @npk, ct, ske):
Attest P * Establishes secure
) hannel
s C
%ec. Channe;' H | ¢ Verifies sk;
d | e DecryptX
sk M | * Launchesenclave F’

o,

e |Local attests enclave F’

‘l’f{

S6

i / Data User
ct, mpk = (pk,, pk)

Attest F’

bc. channel

_/

L

x O

~

KF’: ﬂ\

e Establish sec.
channel

* Compute ‘

P)

—

Q&A

Q: Adversary controls the 10 Shim layer. Can she/he modify:
1. The secret key sk
2. Program loaded P

3. The encryption of the secret key sk and observe output F(X) to learn
information about sk ?

A:

1. No, follows by security of signature scheme

2. No, follows by attestation property of SGX

3. Channel must be protected with CCA2 properties.

Q&A

Q: How does the proof work?

7

Authority

~

msk = (sk,, sk)

f

sk

A

Attest

Sec. channel

o

p >

sk

-

< — I w

-

Data User

ct, mpk = (pk,, pk)

/SGX Encryptedﬂ

Container

* sk sk,
* F(X)

o

N

//////'Needtosnnukne!

/
L F(X) ﬂ

Q&A

Q: How does the proof work? A:

4 Authority) f / Data User \ * In simulation, F(X)

comes from the

A

msk = (skp, sk) ski ct, mpk = (pky, pk;) authority via sec.
channel (enc(0) in the
Attest real game)
< /SGX Encryptedﬂ e Indisti <habill f
Sec. channel 10 Container ndaistinguisnapllity o

enc(0) and enc(F(X))

d > follows by sec. channel
) s > I;I " SKe sk (not readily. need to
m |° FX) use dual-encryption
_) _ . tech.)

_ VEX)

Q&A

Q: What is “function description” and how does authority validate it?

A: An arbitrary C/C++ program code that is given to the authority. Authority
can inspect the code, compile into sgx-enabled executable and sign the
executable. sk, = (executable, signature of the executable).

Q&A

Q: SGX is vulnerable to side-channels?

A: Yes, while inspecting the code of a function F, the authority can ensure that
it side-channel free or augment it into such form before compiling.

Program P needs to be built side-channel free once and for all.

(Side-channel free: e.g., constant time.)

Q&A

Q: What happens if the data user restarts the node?

|II

A: SGX has a mechanism to “seal” enclave secrets on persistent storage with a

hardware-derived key.

Outline

v Motivation and our results

v Background on secure hardware (Intel SGX)
v' Construction overview

v Proof insights

* Implementation details and performance

Implementation

Intel i5, 16 GB RAM, Intel SGX SDK 1.6 for Windows

Crypto Algorithms:
ElGamal (MSR_ECClib.lib) + AES-GCM
ECDSA (sgx_tcrypto.lib)

Supported functions

» Any function that can be loaded into an enclave

» And resist side-channels

Implementation

We implement oblivious IBE, ORE, 3-DNF, simple linear regression

By implementing data comparisons in registers, constant time, code-independent accesses [OSF+16]

> IBE . ct « Enc(ID, X) X « Dec(skp, ct)

» Order(X,Y) :Output 1ifx >y, else0

» 3-DNF(X,Y,Z) Output (xyAy; AZ) V-V (XA Yy A Zp)
_——

n-bit vectors

» SimpLinReg({a, b,}) : Output the best-fit («, B) such that b; = a + B a;

Evaluation

* FE.Setup : 130 ms (60 ms for KMEnclave creation)
* FE.KeyGen :10ms

* FE.Decrypt:

Functionality: | IBE ORE 3DNF
create enclave 14.5 ms | 20.7 ms 19.7 ms
local attest 1.6 ms 2.1 ms 2.1 ms
decrypt & eval | 0.98 ms | 0.84 ms 0.96 ms
Total 178 ms | 23.78 ms | 22.76 ms

Figure 5: Breakdown of FE.Decrypt run times for each of our IRON implementations of IBE, ORE, and 3DNF. The input

in IBE consisted of a 3-byte tag and a 32-bit integer payload. The input pairs in ORE were 32-bit integers, and the input

triplets in 3DNF were 16-bit binary strings. (The input types were chosen for consistency with the 5Gen experiments).
39

IBES“* | IBE[BFOU | x increase
] |msg|: 35 bits 35 bits NA
Fvaluation 175 bytes | 471 bytes | 2.69
decrypt: | 17.8 ms 49 ms 2.75
decrypt™: | 0.39 ms 49 ms 125.64
ORE®“* | ORE®%*" | x increase
msg| : 32 bits 32 bits NA
K 172 bytes | 4.7 GB | 27.3- 10°
decrypt: | 23.78 ms | 4m 10.1 - 10°
decrypt® : | 0.32 ms 4 m 750 - 10°
3DNF°“* | 3BDNF°““" | x increase
|msg]: 16 bits 16 bits NA
Ic[: 170 bytes | 2.5 GB 14.7-10°
decrypt: | 22.76 ms 3 m 7.9-10°
decrypt™: | 0.45 ms 3 m 400 - 10°

Figure 6: Comparison of decryption times and ciphertext sizes for the IRON implementation of IBE, ORE, 3DNF to
cryptographic implementations. The 5Gen ORE and 3DNF implementation referenced here uses the CLT mmap with
an 80-bit security parameter. The column decrypt gives the cost of running a single decryption, and decrypt® gives the
amortized cost (per ciphertext tuple) of 10 decryptions.

Thank youl!

