
Iron: Functional encryption
using Intel SGX

Sergey Gorbunov

University of Waterloo

Joint work with Ben Fisch, Dhinakaran Vinayagamurthy, Dan Boneh.

Motivation

2

DNA_A

DNA_B

DB = Database of DNA
sequences

Challenges:
1. Ensure privacy of users’ DNA sequences in the DB.
2. Selectively enable services (i.e. computations) over private data in DB

DBDB

DB

FE to the Rescue

3

ct = Enc(mpk, DB)

CTCT

CT

CT CT CT

F1
F2skF1

skF2

skF1

F1(DB)

skF2

F2(DB)
skF3

F3(DB)

mpk, msk

FE Definition

• (mpk, msk) ← Setup(1n) Authority (NIH)

• ct ← Enc(mpk, X) Data Owner (may not be NIH)

• skF ← Keygen(msk, F) Authority

• F(X) ← Dec(skF, ct) Service / Data User

4

[Boneh, Sahai, Waters 11]

FE Security - Informal

• Indistinguishability (IND):

Adversary given access to (skF1, skF2, …, skFq), cannot distinguish between
Enc(mpk, X0) and Enc(mpk, X1) where Fi(X0) = Fi(X1) for all i.

• Simulation (SIM):

Adversary given (skF1, skF2, …, skFq) and Enc(mpk, X), learns only F1(X),

F2(X), …, Fq(X)

5

FE Security – semi-formal

6

FE scheme

F1, F2, …

SKF1, SKF2, …

Adv

(X, st)

MPK

𝑐≈

MPK

st

(X, st)

Real World Ideal World

Sim

Adv

X

st

ct

F1(X), F2(X), …

ct

F1, F2, …

SKF1, SKF2, …

[BSW11,O’N10]

Previous Results

7

• FE for Boolean formulas/inner products [GPSW06, LOSTW10, AFV11,

ABDP15, BJK15, ALS16, KLM+16, BCFG17, …]

 Various standard assumptions: LWE, pairings, etc.

 Somewhat efficient

• General functions/circuits [GGHRSW14, ABSV15, Wat16, BKS16,

BNPW16, …]

х Non-standard assumptions (multi-linear maps, obfuscation)

х Very inefficient [ACLL’15]

8

Can we build an efficient, provably-secure FE scheme
for arbitrary functions from a plausible assumption?

Our Results

Thm: We present efficient, provably-secure FE for arbitrary functions

assuming existence of secure hardware (Intel SGX) modules.

 We model and argue the security under strong simulation notion.

 No restriction on the complexity of functions: need to be written in C/C++.

 We demonstrate practical efficiency with a prototype implementation and

benchmark against known crypto FE constructions.

Outline

 Motivation and our results

• Background on secure hardware (Intel SGX)

• Construction overview

• Proof insights

• Implementation details and performance

Intel SGX Overview

11

User
program/data

CPU

Memory

User
program/data

(steady state, post-setup)

Container:
• Program code
• Stack
• Libraries
• Internal states
• Data pages

Untrusted Host

Goal: provide secure execution environment on an untrusted remote host, assuming only security
of a processor enabled with a set of encryption routines (Intel SGX).

Standard CPU Logic +
Hardware Module +
Encryption Routines (SGX)

Only the CPU is tamper
safe from the adversary

Intel SGX Overview

12

 Encrypted user-level memory container

• User-level = cannot do syscalls, IO, network communication, etc.

 Physically encrypted pages of program code and data in memory

 Key is protected on the CPU and cannot be extracted,

encrypts/decrypts container pages before execution

13

Intel SGX Overview

Property 1: Attestation

• A party can verify that it is communicating with a program running in the

encrypted container on a platform associated with a key pair (pk, sk)

• Verification wrt a public “measurement” of the program (hash)

• Local attestation: two containers running on the same node can attest

each other

• Remote attestation: a remote user can attest that a specific program is

running inside a secure container

14

Intel SGX Overview

ProofP =
Sign(sk, H(P))

User
program P

CPU

Memory

User
program/data

User
program/data

pk
ProofP

ProofP

Attest(pk, P, ProofP)

pk, sk

15

Intel SGX Overview

Property 2: Isolated execution

• Confidentiality: “black-box” execution of a program

 Internal state of the program is hidden from adversary

• Integrity:

 Adversary cannot change execution state/data/program,

 Cannot modify the output of the program on a given input

16

Intel SGX Overview

ProofP(X) =
Sign(sk, P(X))

User
program P

CPU

Memory

User
program/data

pk

Input X

Verify(pk, P(X), ProofP(X))

pk, sk

P(X), ProofP(X)

SGX Formal Algorithms

17

• Setup(1n) → (sk, pk)

• Loadsk(P) → ProofP

• Attest(pk, P, ProofP) → 0/1

• Runsk (X) → (P(X), ProofP(X))

• Verify(pk, P(X), ProofP(X)) → 0/1

SGX Initialization and Runtime

18

P(X), ProofP(X)User
program P

CPU

Memory
pk

pk, sk
ProofP

Goal: secure verifiable computation outsourcing of a program P on input X.

Load(P)
P, X

Attest(pk, P, ProofP)

Sec. channel

X

P(X), ProofP(X)

Verify(pk, P(X), ProofP(X))

SGX – The Good

• Shielded execution of unmodified Windows apps [BPH14]

• Secure MapReduce computations [SCF+15, DSC+15, OCF+15]

• Secure Linux containers [ATG+16, STT+17]

• An authenticated data feed for smart contracts [ZCC+16]

• Secure distributed data analytics (Spark SQL) [ZDB+17]

19

Becoming a building block for many secure applications!

• Other CPU manufacturers have their own version of SGX (AMD SEV)
• Easy to use, develop, integrate, etc.

SGX – The Ugly

• Programs running inside encrypted containers are subject to side-
channel attacks:

• Page-fault attacks [XCP15]

• Synchronization bugs [WKPK16]

• Branch shadowing [SLK+17]

• Cache attacks [BMD+17, SWG+17]

• Lots of academic work providing stronger security guarantees and
mitigating SGX side-channels
[CLD16, SLKP16, LSG+16, WKPK16, SLK+17, SGF17].

20

SGX – The Ugly Cont.

• Intel is trusted for the HW implementation

• Cannot change the working function inside the encrypted container
after it is loaded/attested

• Small working memory (~90MB)

• No system calls/IO/network communication

21

System vs Model vs Proof

22

IPSec

Disk encryption

Outline

 Motivation and our results

 Background on secure hardware (Intel SGX)

• Construction overview

• Proof insights

• Implementation details and performance

Our Construction

24

(simplified)

Building blocks:

• SGX (on data user node)

• public-key encryption (p.setup, p.enc, p.dec)

• signature scheme (s.setup, s.sign, s.verify)

Our Construction

25

Data UserAuthority
Data

Owner

Setup(1k) → (mpk, msk)

1) s.setup(1k) → (vks, sks)
2) p.setup(1k) → (pkp, skp)
3) mpk = (pkp, vks), msk = (skp, sks)

Enc(mpk, X) → ct

1) p.enc(pkp, X) → ct

Dec(skF, ct) → F(X)

(next slide)

SGX

Keygen(msk, F) → skF

1) s.sign(sks, F) → skF

(simplified)

F
mpk

26

Dec(skF, ct) → F(X):

Data UserAuthority F

SGX Encrypted
Container

msk = (skp, sks)

• Verify skF

• Decrypt X
• Output F(X)

ct,
mpk = (pkp, pks)

Attest

Sec. channel

skp

1) Enc. container
cannot talk
over network?

2) Which function
to attest in enc.
container?

Problems:

27

Dec(skF, ct) → F(X):

Data UserAuthority F

SGX Encrypted
Container

msk = (skp, sks)

• Verify skF

• Decrypt X
• Output F(X)

ct, mpk = (pkp, pks)

Attest

Sec. channel

skp

1) Enc. container
cannot talk
over network?

IO

S
H
I

M

28

Dec(skF, ct) → F(X):
2) Which function
to attest in enc.
container?

Define: P(mpk, ct, skF):
1) Establish secure

channel
2) Verify skF

3) Decrypt X
4) Output F(X)

Load and attest P

Data UserAuthority F

SGX Encrypted
Container

msk = (skp, sks)

• Verify skF

• Decrypt X
• Output F(X)

ct, mpk = (pkp, pks)

Attest

Sec. channel

skp

IO

S
H
I

M

Data User

Dec(skF, ct) → F(X):
2) Which function
to attest in enc.
container?

Authority F

msk = (skp, sks)

P(mpk, ct, skF):
• Establishes secure

channel
• Verifies skF

• Decrypt X
• Launches enclave F’
• Local attests enclave F’

ct, mpk = (pkp, pks)

Attest P

Sec. channel

skp

IO

S
H
I

M
F’:
• Establish sec.

channel

• Compute
F(X)

sec. channel

X

Attest F’

Q & A

Q: Adversary controls the IO Shim layer. Can she/he modify:

1. The secret key skF

2. Program loaded P

3. The encryption of the secret key skp and observe output F(X) to learn
information about skp?

A:

1. No, follows by security of signature scheme

2. No, follows by attestation property of SGX

3. Channel must be protected with CCA2 properties.

Q & A

Q: How does the proof work?

Data UserAuthority f

SGX Encrypted
Container

msk = (skp, sks)

• skF skp

• F(X)

ct, mpk = (pkp, pks)

Attest

Sec. channel

skp

IO

S
H
I

M

F(X)

Need to simulate!

Q & A

Q: How does the proof work?

Data UserAuthority f

SGX Encrypted
Container

msk = (skp, sks)

• skF skp

• F(X)

ct, mpk = (pkp, pks)

Attest

Sec. channel

F(X), skp

IO

S
H
I

M

A:

• In simulation, F(X)
comes from the
authority via sec.
channel (enc(0) in the
real game)

F(X)

• Indistinguishability of
enc(0) and enc(F(X))
follows by sec. channel
(not readily. need to
use dual-encryption
tech.)

Q & A

A: An arbitrary C/C++ program code that is given to the authority. Authority
can inspect the code, compile into sgx-enabled executable and sign the
executable. skF = (executable, signature of the executable).

Q: What is “function description” and how does authority validate it?

Q & A

A: Yes, while inspecting the code of a function F, the authority can ensure that
it side-channel free or augment it into such form before compiling.

Program P needs to be built side-channel free once and for all.

(Side-channel free: e.g., constant time.)

Q: SGX is vulnerable to side-channels?

Q & A

A: SGX has a mechanism to “seal” enclave secrets on persistent storage with a
hardware-derived key.

Q: What happens if the data user restarts the node?

Outline

 Motivation and our results

 Background on secure hardware (Intel SGX)

 Construction overview

 Proof insights

• Implementation details and performance

Implementation

37

Intel i5, 16 GB RAM, Intel SGX SDK 1.6 for Windows

Crypto Algorithms:

 PKE ElGamal (MSR_ECClib.lib) + AES-GCM

 Signature ECDSA (sgx_tcrypto.lib)

Supported functions

 Any function that can be loaded into an enclave

 And resist side-channels

Implementation

 IBE : ct ← Enc(ID, X) X ← Dec(skID, ct)

 Order(X, Y) : Output 1 if x > y, else 0

 3-DNF(X,Y,Z) : Output (x1∧ y1 ∧ z1) ∨ ⋯∨ (xn∧ yn ∧ zn)

 SimpLinReg({ai, bi}) : Output the best-fit (α, β) such that bi = α + β ai

38

We implement oblivious IBE, ORE, 3-DNF, simple linear regression

n-bit vectors

By implementing data comparisons in registers, constant time, code-independent accesses [OSF+16]

Evaluation

• FE.Decrypt:

39

• FE.Setup : 130 ms (60 ms for KMEnclave creation)

• FE.KeyGen : 10 ms

Evaluation

40

Thank you!

41

