Middle-Product Learning With Errors

Miruna Rosca

LATCA Workshop, Bertinoro

Middle-Product Learning With Errors

24/05/2018 1 / 29

• Middle-Product Learning With Errors

Miruna Rosca, Amin Sakzad, Damien Stehlé, Ron Steinfeld In proceedings of CRYPTO 2017

★ ∃ ► ★

• Middle-Product Learning With Errors

Miruna Rosca, Amin Sakzad, Damien Stehlé, Ron Steinfeld In proceedings of CRYPTO 2017

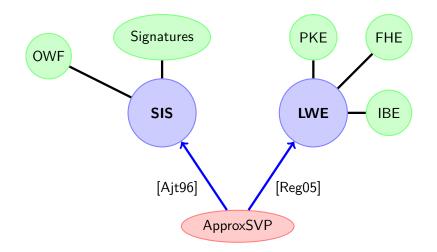
Related works:

- Titanium: Proposal for a NIST Post-Quantum Public-key Encryption and KEM Standard Ron Steinfeld, Amin Sakzad, Raymond Kuo Zhao
- On the Ring-LWE and Polynomial-LWE problems Miruna Rosca, Damien Stehlé, Alexandre Wallet In proceedings of EUROCRYPT 2018

Lattices and crypto

Image: A matched by the second sec

Lattice-based cryptography



< □ > < 同 > < 回 > < 回 > < 回 >

LWE: a quick reminder

Let $n \ge 1$, $q \ge 2$, $\alpha \in (0, 1)$ and $\mathbb{R}_q := \mathbb{R}/q\mathbb{Z}$ Let $D_{\alpha \cdot q}$ be the Gaussian on \mathbb{R} of standard deviation $\alpha \cdot q$

$\mathsf{LWE}^n_{q,\alpha}(s)$ for $s \in \mathbb{Z}^n_q$

• sample
$$a \leftrightarrow U(\mathbb{Z}_q^n)$$
 and $e \leftrightarrow D_{\alpha \cdot q}$

• return
$$(a,b=< a,s>+e)\in \mathbb{Z}_q^n imes \mathbb{R}_q$$

(decision) $LWE_{q,\alpha}^n$

With non-negligible probability over $s \hookleftarrow U(\mathbb{Z}_q^n),$ distinguish between oracle access to

$$\mathsf{LWE}^n_{q,lpha}(s)$$
 and $U(\mathbb{Z}^n_q imes \mathbb{R}_q)$

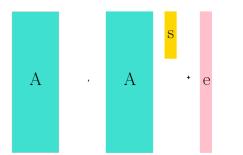
▲ ศ 🛛 ト ▲ 三 ト

LWE with matrices



Decision: Distinguish the LWE distribution from the uniform one. **Search**: Find **s**.

Search is BDD on $\Lambda_q(A) = \{y \in \mathbb{Z}^m : y = A \cdot s \mod q \text{ for some } s \in \mathbb{Z}^n\}$



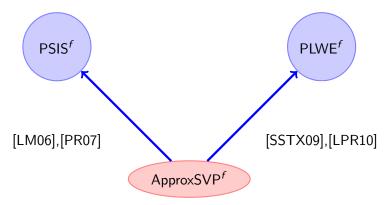
Decision: Distinguish the LWE distribution from the uniform one. **Search**: Find **s**.

Search is BDD on $\Lambda_q(A) = \{y \in \mathbb{Z}^m : y = A \cdot s \mod q \text{ for some } s \in \mathbb{Z}^n\}$

Pro: all known ApproxSVP algorithms are exponential in the dimension n

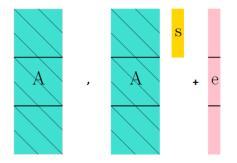
Con: large keys and slow computations because of the matrices involved

Put some extra algebraic structure on the objects!



∃ ▶ ∢

PLWE with matrices



Pro: faster cryptographic applications since we work with structured matrices

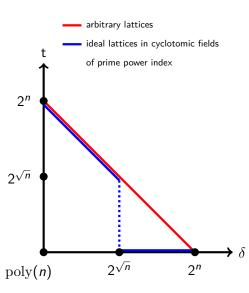
```
Con: how hard is ApproxSVP<sup>f</sup>?
```

ApproxSVP could be easy for some f' s

• [BS15]: quantum poly. time algorithm to find a generator of a **principal ideal** in any number field

The case of cyclotomics of prime power index:

- [CDPR16]: quantum poly. time algorithm to find a short generator of a principal ideal for 2^{O(√n)} approx. factor
- [CDW17]: quantum poly. time algorithm to solve ApproxSVP for **all ideals** for $2^{O(\sqrt{n})}$ approx. factor



[New result: Alice Pellet--Mary and Damien Stehlé]

- PLWE may still be hard
- impact on the hardness foundation of PLWE
- two solutions:
 - use non-cyclotomic polynomials: [BCLvV16], [PRSD17]
 - use problems which are provably at least as hard as PLWE^f (or PSIS^f) for a wide class of polynomials f

How to hedge against the weak f risk?

[Lyu16]: PSIS over $\mathbb{Z}_q[x]$

$\mathsf{PSIS}^{f}_{k,\beta}$

Given $a_1, \ldots, a_k \leftarrow \mathbb{Z}_q[x]/f$, find a nontrivial sol. for $\sum_i a_i z_i = 0 \mod f$ such that $||z_i||_{\infty} \leq \beta$.

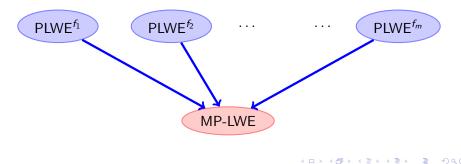
$\mathsf{PSIS}^{< n}_{k,\beta,d}$

Given $a_1, \ldots, a_k \leftarrow \mathbb{Z}_q^{< n}[x]$, find a nontrivial sol. for $\sum_i a_i z_i = 0$ such that $||z_i||_{\infty} \leq \beta$ and deg $z_i < d$.

 $\mathsf{PSIS}^f_{k,\beta}$ reduces to $\mathsf{PSIS}^{< n}_{k,\beta,d}$ for any polynomial f s.t. $d \leq \deg(f) \leq n$.

Our result: the LWE case

- we introduce MP-LWE, by making use of the middle product of polynomials
- we give a reduction from (decision) PLWE^f to (decision) MP-LWE for a wide class of polynomials f



Middle Product of two polynomials

Let R be a ring, $a \in R^{<n}[x]$ and $b \in R^{<2n-1}[x]$ two polynomials.

• Their product is:

$$c_0 + \dots + c_{n-2}x^{n-2}$$

+ $c_{n-1}x^{n-1} + c_nx^n + \dots + c_{2n-2}x^{2n-2}$

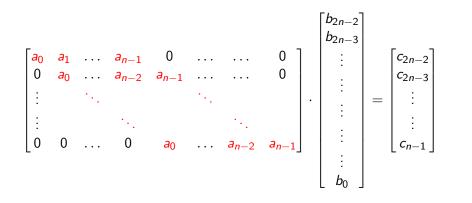
$$+c_{2n-1}x^{2n-1}+\cdots+c_{3n-3}x^{3n-3}\in R^{<3n-2}[x]$$

• Their *n*-middle product is:

$$a \odot_n b := c_{n-1} + c_n \cdot x + \ldots + c_{2n-2} \cdot x^{n-1} \in \mathbb{R}^{< n}[x]$$

[The definition generalizes to any *d* middle coefficients]

Matrix interpretation of the middle product



24/05/2018 15 / 29

PLWE and MP-LWE distributions

 $D_{\alpha \cdot q}$: Gaussian on $\mathbb{R}^{< n}[x]$ with standard deviation $\alpha \cdot q$.

 $P_{q,\alpha}^t(s)$ for a polynomial f of degree n and $s \in \mathbb{Z}_q[x]/f$

- sample $a \leftarrow U(\mathbb{Z}_q[x]/f)$ and $e \leftarrow D_{\alpha \cdot q}$
- return $(a, b = a \cdot s + e) \in \mathbb{Z}_q[x]/f \times \mathbb{R}_q[x]/f$

$$\mathsf{MP}_{q,\alpha}^n(s)$$
 for $s \in \mathbb{Z}_q^{<2n-1}[x]$

• sample
$$a \leftrightarrow U(\mathbb{Z}_q^{< n}[x])$$
 and $e \leftrightarrow D_{\alpha \cdot q}$

- return $(a, b = a \odot_n s + e) \in \mathbb{Z}_q^{< n}[x] \times \mathbb{R}_q^{< n}[x]$
- * We use the notation $\mathbb{R}_q := \mathbb{R}/q\mathbb{Z}$

(decision) $\mathsf{PLWE}_{q,\alpha}^{f}$

With non-negligible probability over $s \leftrightarrow U(\mathbb{Z}_q[x]/f)$, distinguish between

 $\mathsf{P}^{f}_{q,lpha}(s)$ and $U(\mathbb{Z}_{q}[x]/f imes \mathbb{R}_{q}[x]/f)$

(decision) MP-LWEⁿ_{q,α}

With non-negligible probability over $s \leftarrow U(\mathbb{Z}_q^{\leq 2n-1})$, distinguish between

 $\mathsf{MP}^n_{q,\alpha}(s)$ and $U(\mathbb{Z}^{< n}_q[x] imes \mathbb{R}^{< n}_q[x])$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ― 臣 – ∽��?

Let n, S > 0, $q \ge 2$, and $\alpha \in (0, 1)$.

 $\mathsf{PLWE}_{q,\alpha}^f$ reduces to $\mathsf{MP-LWE}_{q,\alpha\cdot n\cdot S}^n$

for any monic $f \in \mathbb{Z}[x]$ s.t.

• deg
$$f = n$$

•
$$gcd(f_0,q) = 1$$

•
$$\mathsf{EF}(f) := \max \left\{ \begin{array}{c} rac{||g \mod f||_{\infty}}{||g||_{\infty}} : g \in \mathbb{Z}^{< 2n - 1}[x] \setminus \{0\} \end{array}
ight\} < S$$

$$\operatorname{Rot}_f(b) = \operatorname{Rot}_f(a) \times \operatorname{Rot}_f(s) + \operatorname{Rot}_f(e)$$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

 ▶ < ≣ ▶ ≡ </td>
 > Q < </td>

 24/05/2018
 19 / 29

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

$Rot_f(b)$	=	Rot _f (a)	×		Rot _f (s)		+		$Rot_f(e)$	
Take first column										
M _f	ь =	Rot _f (a)	×		M _f	5	+		M _f	е
Decompose $\operatorname{Rot}_f(a)$										
<i>b</i> ′ =	То	ep(<i>a</i>)	$\operatorname{Rot}_f(1)$	×	M _f	5	+		M _f	е

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Rot _f (b)	=	Rot _f (a)	×	Rot _f (s)	+	$\operatorname{Rot}_f(e)$			
Take first column									
M _f	b =	Rot _f (a)	×	M _f	s +	M _f e			
Decompose Rot _f (a)									
<i>b</i> ′ =	То	ep(<i>a</i>)	$Rot_f(1) \times$	M _f	s +	M _f e			
Rename									
<i>b</i> ′ =	То	ep(<i>a</i>)	×	s'	+	e'			
М	iruna Rosca		Middle-Product Lea	rning With Error		□ ▷ 《 () ▷ 《 () ▷ 《 () ▷ ③ () ○ () ○ () ○ () ○ () ○ () ○ () ○ ()			

Does b' really correspond to an MP-LWE sample?

Randomize the secret s' (self-reducibility)

Remove the dependency on f in e' (covariance compensation) $b^* = e^* + b''$

PKE from MP-LWE

э

• • • • • • • • • • • •

Public-Key Encryption from MP-LWE

Let q be an odd integer.

KeyGen (1^{λ}) :

•
$$sk := s \leftrightarrow U(\mathbb{Z}_q^{\leq 2n-1}[x])$$

• for
$$i \leq t = O(\log q)$$

•
$$a_i \leftarrow U(\mathbb{Z}_q^{< n}[x])$$

• $e_i \leftarrow \lfloor D_{\alpha q} \rceil^n$
• $b_i = a_i \odot_n s + 2 \cdot e_i$

• $\mathsf{pk} := (a_i, b_i)_i$

Public-Key Encryption from MP-LWE

Let $\mu \in \{0,1\}^{< n/2}[x]$ be a message.

 $\mathsf{Encrypt}(\mu)$:

• for
$$i \le t$$
, sample $r_i \leftrightarrow U(\{0,1\}^{< n/2+1}[x])$
• return $c = (c_1, c_2)$ with:

$$c_1 = \sum r_i \cdot a_i$$
, $c_2 = \mu + \sum r_i \odot_{n/2} b_i$.

Decrypt(c) : return the message

$$\mu' = (c_2 - c_1 \odot_{_{n/2}} s \bmod q) \bmod 2.$$

< □ > < □ > < □ > < □ > < □ > < □ >

For all polynomials of compatible degrees:

$$r \odot_{_{n/2}} (a \odot_{_n} s) = (r \cdot a) \odot_{_{n/2}} s$$

$$c_2 - c_1 \odot s = \mu + \sum r_i \odot b_i - (\sum r_i \cdot a_i) \odot s$$

= $\mu + \sum (r_i \odot (a_i \odot s + 2 \cdot e_i) - (r_i \cdot a_i) \odot s)$
= $\mu + 2 \sum r_i \odot e_i$

* If $||\mu + 2\sum r_i \odot e_i||_{\infty} < q/2$, then we can recover μ .

Security

- replace the public key with a truly uniform one (that's fine, thanks to the MP-LWE assumption)
- use the generalized Leftover Hash Lemma to prove that

$$(a_i, b_i)_i, \sum r_i \cdot a_i, \sum r_i \odot_{_{n/2}} b_i$$

and

$$(a_i, b_i)_i, \sum r_i \cdot a_i, u$$

are statistically close.

Related works

æ 26 / 29

3

・ロト ・ 日 ト ・ 目 ト ・

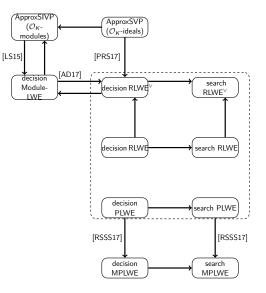
NIST proposal based on MP-LWE: Titanium [SSZ18]

- choose parameters via the reduction
- the case of Std128:
 - parameters for Titanium-CPA: n = 1024, t = 9, q = 86017
 - parameters for Titanium-CCA: n = 1024, t = 10, q = 118273
 - size of the family of polynomials $f: 3^{256}$
 - size of the keys: |pk| = 14 KB, |sk| = 0.032 KB, |ct| = 3 KB

- small differences from [RSSS17]:
 - coefficients of r_i can be bigger than 1
 - the error is from a difference of two binomials

24/05/2018 27 / 29

On variants of Ring-LWE and PLWE [RSW18]



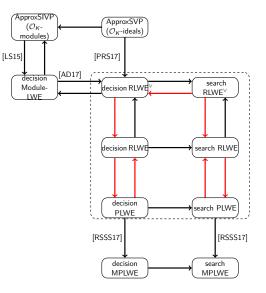
Middle-Product Learning With Errors

24/05/2018 28 / 29

э

< □ > < 同 > < 回 > < 回 > < 回 >

On variants of Ring-LWE and PLWE [RSW18]



24/05/2018 28 / 29

э

< □ > < 同 > < 回 > < 回 > < 回 >

- reduce MP-LWE to PLWE
- get a search MP-LWE to decision MP-LWE reduction
- give an algebraic meaning of MP-LWE
- build more advanced primitives from MP-LWE

Thank you.