# LPN Authentication



Institute of Science and Technology



Bertinoro, Lattice Crypto and Algorithms, May 24th, 2018

## https://spotniq.school/

#### Welcome to Spotniq

This IACR school will provide a comprehensive coverage of *proof techniques* used in symmetric cryptography. It will be targeted at Ph.D. students and post-docs who are primarily working in this area. The school will be taking place between 29 July 2018 and 2 August 2018 in Bertinoro, Italy.

#### Speakers

Mihir Bellare, UC San Diego Phil Rogaway, UC Davies John Steinberger, Tsinghua Aishwarya Thiruvengadam, UC Santa Barbara Krzysztof Pietrzak, IST Austria Stefano Tessaro, UC Santa Barbara Pooya Farshim, ENS



# Efficient Authentication from Hard Learning Problems





David Cash

Abhishek Jain

Daniele Venturi

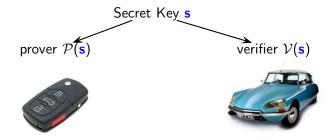






Eurocrypt 2011 May 16th, 2011

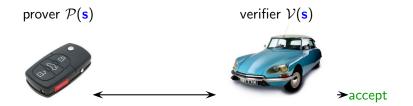
- The quest for lightweight authentication.
- The LPN problem.
- Authentication from LPN: HB and friends.
- The subset LPN problem.
- A new authentication protocol.
- Message authentication.



#### ◆ロ▶ ◆聞▶ ◆臣▶ ◆臣▶ 三臣 のなの



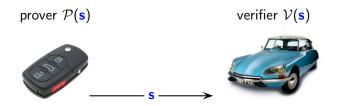
#### →accept/reject



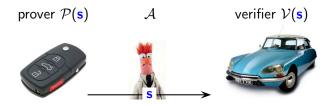
#### Correctness : $\mathcal{V}(s)$ accepts if interacting with $\mathcal{P}(s)$



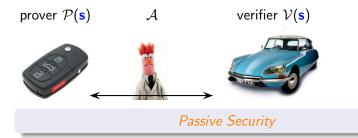
#### Security : $\mathcal{V}(s)$ rejects if interacting with $\mathcal{A}$



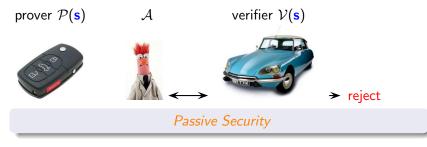
#### Security : $\mathcal{V}(s)$ rejects if interacting with $\mathcal{A}$



#### Security : $\mathcal{V}(s)$ rejects if interacting with $\mathcal{A}$



1st phase: A can observe transcripts.

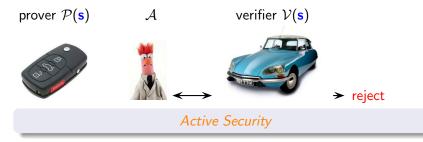


1st phase:  $\mathcal{A}$  can observe transcripts. 2nd phase:  $\mathcal{V}(s)$  rejects if interacting with  $\mathcal{A}$ .

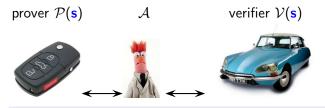


Active Security

1st phase:  $\mathcal{A}$  gets transcripts + can interact with  $\mathcal{P}(\mathbf{s})$ .

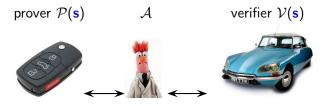


1st phase:  $\mathcal{A}$  gets transcripts + can interact with  $\mathcal{P}(s)$ . 2nd phase:  $\mathcal{V}(s)$  rejects if interacting with  $\mathcal{A}$ .



Man-In-The-Middle Security

1st phase:  $\mathcal{A}$  can arbitrarily interact with  $\mathcal{P}(\mathbf{s}), \mathcal{V}(\mathbf{s})$ .



Man-In-The-Middle Security

1st phase:  $\mathcal{A}$  can arbitrarily interact with  $\mathcal{P}(s), \mathcal{V}(s)$ . 2nd phase:  $\mathcal{V}(s)$  rejects if interacting with  $\mathcal{A}$ .

(ロ・・部・・ボン・ボン・ ほう ろくの

prover  $\mathcal{P}(\mathbf{s})$ 





#### 

prover  $\mathcal{P}(s)$  verifier  $\mathcal{V}(s)$   $\swarrow$  challenge —

prover  $\mathcal{P}(s)$  verifier  $\mathcal{V}(s)$  $\longrightarrow$  AES(s, challenge)  $\longrightarrow$ 

prover  $\mathcal{P}(s)$  verifier  $\mathcal{V}(s)$  $\longrightarrow$  AES(s, challenge)  $\longrightarrow$ 

# What if block ciphers are not an option?

prover  $\mathcal{P}(s)$  verifier  $\mathcal{V}(s)$  $\longrightarrow$  AES(s, challenge)  $\longrightarrow$ 

# What if block ciphers are not an option?



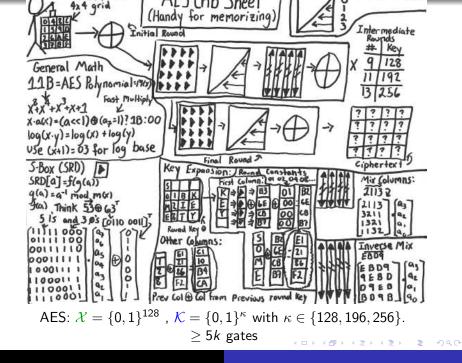
- RFID<sup>1</sup> tags: 1k-10k gates, 200-2k for security.
- AES  $\geq$  5k gates.



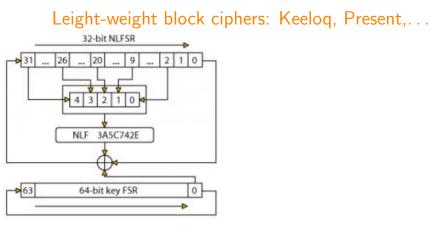
- RFID<sup>1</sup> tags: 1k-10k gates, 200-2k for security.
- AES  $\geq$  5k gates.



<sup>1</sup>Radio-Frequency IDentification

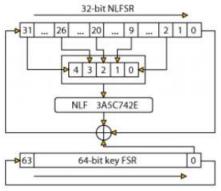


- < ロ > < 団 > < 臣 > < 臣 > 三 - の < ()



#### ◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

# Leight-weight block ciphers: Keeloq, Present,...



How to Steal Cars – A Practical Attack on KeeLog<sup>®</sup>

Eli Biham<sup>1</sup> Orr Dunkelman<sup>2</sup> Sebastiaan Indesteege<sup>2</sup> Nathan Keller<sup>3</sup> Bart Preneel<sup>2</sup>

<sup>1</sup>Computer Science Department, Technion, Israel.

<sup>2</sup>Dept. ESAT/SCD-COSIC, K.U.Leuven, Belgium.

<sup>3</sup>Einstein Institute of Mathematics, Hebrew University, Israel.

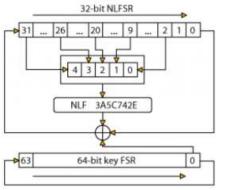
CRYPTO 2007 Rump Session







# Leight-weight block ciphers: Keeloq, Present,...



How to Steal Cars – A Practical Attack on KeeLoq®

Eli Biham<sup>1</sup> Orr Dunkelman<sup>2</sup> Sebastiaan Indesteege<sup>2</sup> Nathan Keller<sup>3</sup> Bart Preneel<sup>2</sup>

<sup>1</sup>Computer Science Department, Technion, Israel.

<sup>2</sup>Dept. ESAT/SCD-COSIC, K.U.Leuven, Belgium.

<sup>3</sup>Einstein Institute of Mathematics, Hebrew University, Israel.

CRYPTO 2007 Rump Session







Provably Secure (LPN Based) Authentication Schemes. [HB'01],[JW'05],[ACPS'09],[KSS'10],...



# Learning Parity with Noise (LPN)

(ロ ) (四 ) ( 三 ) ( 三 ) ( 四 ) ( 四 )

 ${f s} \in {\mathbb Z}_2^n \;,\; 0 < au < 0.5$ 





**⊡ > ∢** ∃

 $\mathbf{s} \in \mathbb{Z}_2^n$ ,  $\mathbf{0} < \tau < \mathbf{0.5}$ 





 $\mathbf{r}_1 \leftarrow \mathbb{Z}_2^n \ \mathbf{e}_1 \leftarrow \mathsf{Ber}_{\tau}$ 



 $\mathbf{s} \in \mathbb{Z}_2^n$ ,  $\mathbf{0} < \tau < \mathbf{0.5}$  $-\mathbf{r}_1, \langle \mathbf{r}_1, \mathbf{s} 
angle + \mathbf{e}_1 - \mathbf{e}_1$ 

 $\mathbf{r}_1 \leftarrow \mathbb{Z}_2^n \ \mathbf{e}_1 \leftarrow \mathsf{Ber}_{\tau}$ 



~ -

$$\mathbf{s} \in \mathbb{Z}_{2}^{n}, \ 0 < \tau < 0.5$$

$$\mathbf{r}_{1}, \langle \mathbf{r}_{1}, \mathbf{s} \rangle + \mathbf{e}_{1} \longrightarrow \mathbf{r}_{2}, \langle \mathbf{r}_{2}, \mathbf{s} \rangle + \mathbf{e}_{2} \longrightarrow \mathbf{r}_{2}$$

æ

御 と く き と く き と

 $\mathbf{r}_2 \leftarrow \mathbb{Z}_2^n \ \mathbf{e}_2 \leftarrow \operatorname{Ber}_{\tau}$ 

$$\mathbf{s} \in \mathbb{Z}_2^n , \ \mathbf{0} < \tau < \mathbf{0.5}$$

$$\mathbf{r}_1, \langle \mathbf{r}_1, \mathbf{s} \rangle + \mathbf{e}_1 \longrightarrow \mathbf{r}_2, \langle \mathbf{r}_2, \mathbf{s} \rangle + \mathbf{e}_2 \longrightarrow \mathbf{r}_2, \langle \mathbf{r}_2, \mathbf{s} \rangle$$

 $\mathbf{r}_2 \leftarrow \mathbb{Z}_2^n \ \mathbf{e}_2 \leftarrow \mathsf{Ber}_{\tau}$ 

#### $(q, n, \tau)$ LPN assumption (Search Version)

Hard to find s.

#### $(q, n, \tau)$ LPN assumption (Decisional Version)

Hard to distinguish outputs from uniformly random.

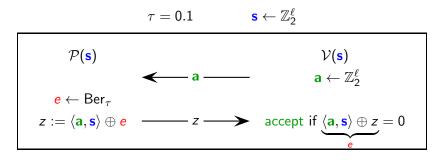
• (Search) LPN equivalent to decoding random linear codes.

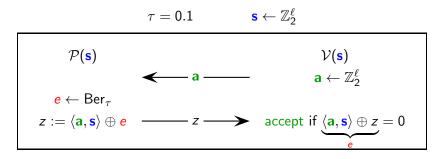


- Search & decision polynomially equivalent.
- Best (quantum) algorithms run in time  $\Theta(2^{n/\log n})$ .

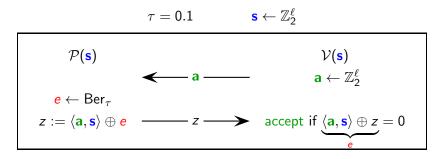


# Authentication from LPN

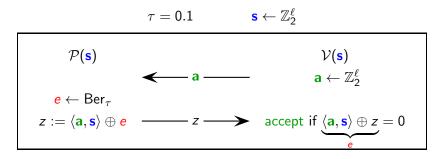




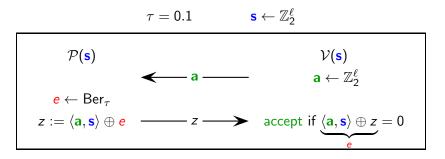
Secure against passive attacks from LPN. • to proof



- Secure against passive attacks from LPN. to proof
- Correctness error 0.1. Soundness error 0.5 + negl.

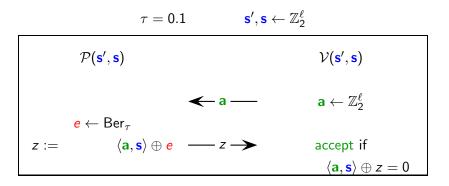


- Secure against passive attacks from LPN. to proof
- Correctness error 0.1. Soundness error 0.5 + negl.
- Can be amplified repeating *n* times  $\Rightarrow$  Errors become  $2^{-\Theta(n)}$ .

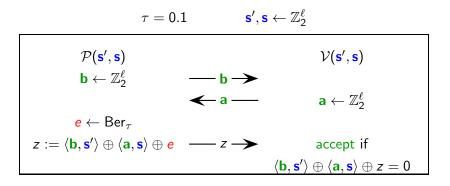


- Secure against passive attacks from LPN. to proof
- Correctness error 0.1. Soundness error 0.5 + negl.
- Can be amplified repeating *n* times  $\Rightarrow$  Errors become  $2^{-\Theta(n)}$ .
- Not secure against active attacks:
  - **3** ask for  $\langle \mathbf{a}, \mathbf{s} \rangle \oplus \mathbf{e}_i$  (for several i)  $\Rightarrow$  majority is  $\langle \mathbf{a}, \mathbf{s} \rangle$  w.h.p..
  - 2 recover s from  $\langle a_j, s \rangle$   $(j = 1, ..., \ell)$  using Gaussian elimination.

## The HB<sup>+</sup> protocol [Juels and Weis Crypto'05]

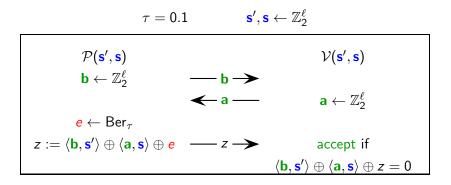


## The HB<sup>+</sup> protocol [Juels and Weis Crypto'05]



Secure against active attacks. to proof

## The HB<sup>+</sup> protocol [Juels and Weis Crypto'05]



- Secure against active attacks. to proof
- Can be amplified by repetition [KS'06].

#### ΗB

- © Round Optimal (2 Rounds).
- $\bigcirc$  Tight reduction: LPN  $\varepsilon$ -hard  $\Rightarrow$  HB  $\varepsilon$ -secure.
- Passive security.

#### HB+

- Active Security.
- ③ 3 Rounds (Prover must be stateful).
- $\bigcirc$  Loose reduction: LPN  $\varepsilon$ -hard  $\Rightarrow$  HB  $\sqrt{\varepsilon}$ -secure.
- © Reduction not Quantum (No Cloning Theorem.)

### ΗB

- © Round Optimal (2 Rounds).
- ☺ Tight reduction: LPN  $\varepsilon$ -hard  $\Rightarrow$  HB  $\varepsilon$ -secure.
- Passive security.

### HB+

- Active Security.
- ③ 3 Rounds (Prover must be stateful).
- $\bigcirc$  Loose reduction: LPN  $\varepsilon$ -hard  $\Rightarrow$  HB  $\sqrt{\varepsilon}$ -secure.
- ② Reduction not Quantum (No Cloning Theorem.)

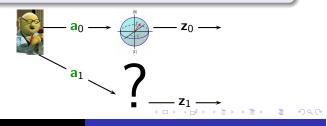
$$a_{0} \rightarrow a_{0} \rightarrow z_{0} \rightarrow a_{1} \rightarrow z_{0} \rightarrow a_{1} \rightarrow z_{1} \rightarrow z_{0} \rightarrow z_{1} \rightarrow z_{0} \rightarrow z_{0$$

#### HΒ

- © Round Optimal (2 Rounds).
- $\bigcirc$  Tight reduction: LPN  $\varepsilon$ -hard  $\Rightarrow$  HB  $\varepsilon$ -secure.
- Passive security.

### HB+

- Active Security.
- ③ 3 Rounds (Prover must be stateful).
- $\bigcirc$  Loose reduction: LPN  $\varepsilon$ -hard  $\Rightarrow$  HB  $\sqrt{\varepsilon}$ -secure.
- ② Reduction not Quantum (No Cloning Theorem.)



| http     | <pre>p://www.ecrypt.eu.org/lightweight/index.php/HB</pre>                                                                                                                    |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Nicholas J. Hopper, Manuel BlumSecure Human Identification Protocols. ASIACRYPT 2001                                                                                         |
| 2        | Ari Juels, Stephen A. Weis. Authenticating Pervasive Devices with Human Protocols. CRYPTO 2005                                                                               |
| 3        | Jonathan Katz, Ji Sun Shin Parallel and Concurrent Security of the HB and HB+ Protocols.                                                                                     |
|          | EUROCRYPT 2006                                                                                                                                                               |
| 2        | Éric Levieil, Pierre-Alain Fouque. An Improved LPN Algorithm. SCN 2006                                                                                                       |
| 5        | Henri Gilbert, Matt Robshaw, Herve Sibert.An Active Attack Against HB+ - A Provably Secure                                                                                   |
|          | Lightweight Authentication Protocol. Cryptology ePrint Archive.                                                                                                              |
| 6        | Jonathan Katz, Adam Smith.Analyzing the HB and HB+ Protocols in the Large Error Case. Cryptology                                                                             |
|          | ePrint Archive.                                                                                                                                                              |
| 7        | Julien Bringer, Hervé Chabanne, Emmanuelle Dottax.HB++.a Lightweight Authentication Protocol Secure against Some Attacks. SecPerU 2006                                       |
| 8        | Jonathan Katz.Efficient Cryptographic Protocols Based on the Hardness of Learning Parity with Noise.<br>IMA Int. Conf. 2007                                                  |
| 9        | Jorge Munilla, Alberto Peinado.HB-MP.A further step in the HB-family of lightweight authentication                                                                           |
| _        | protocols. Computer Networks 51(9).2262-2267 (2007)                                                                                                                          |
| 10       | Dang Nguyen Duc, Kwangjo Kim.Securing HB+ against GRS Man-in-the-Middle Attack. Proc. Of SCIS 2007, Abstracts pp.123, Jan. 23-26, 2007, Sasebo, Japan.                       |
| 0        | Henri Gilbert, Matthew J. B. Robshaw, Yannick Seurin.HB#.Increasing the Security and Efficiency of HB+. EUROCRYPT 2008                                                       |
| 2        | Henri Gilbert, Matthew J. B. Robshaw, Yannick Seurin.Good Variants of HB+ Are Hard to Find. Financial Cryptography 2008                                                      |
| <b>B</b> | Henri Gilbert, Matthew J. B. Robshaw, Yannick Seurin.How to Encrypt with the LPN Problem. ICALP (2) 2008                                                                     |
| 14       | Julien Bringer, Herv Chabanne.Trusted-HB.A Low-Cost Version of HB+ Secure Against Man-in-the-Middle Attacks. IEEE Transactions on Information Theory 54(9).4339-4342 (2008). |
| 15       | Khaled Ouafi, Raphael Overbeck, Serge Vaudenay.On the Security of HB# against a Man-in-the-Middle Attack. ASIACRYPT 2008                                                     |
| 16       | Zbigniew Golebiewski, Krzysztof Majcher, Filip Zagorski, Marcin Zawada.Practical Attacks on HB and HB+ Protocols. Cryptology ePrint Archive.                                 |
| 17       | Xuefei Leng, Keith Mayes, Konstantinos Markantonakis.HB-MP+ Protocol.An Improvement on the<br>HB-MP Protocol. IEEE International Conference on RFID, 2008 April 2008.        |
| 18       | Dmitry Frumkin, Adi Shamir.Un-Trusted-HB.Security Vulnerabilities of Trusted-HB. Cryptology ePrint                                                                           |
|          | Archive.                                                                                                                                                                     |

### New Authentication Protocol

- © Active Security.
- © Round Optimal (2 Rounds).
- © Tight (Quantum) Reduction.



Subspace LWE, K.Pietrzak, Manuscript 2011.

## LPN

 $\mathbf{s} \in \mathbb{Z}_2^m$ 





## LPN

 $\mathbf{s} \in \mathbb{Z}_2^m$ 





 $\mathbf{r} \leftarrow \mathbb{Z}_2^m \ \mathbf{e} \leftarrow \mathsf{Ber}_{\tau}$ 



## LPN

 $\mathbf{s} \in \mathbb{Z}_2^m$  $\mathbf{r}, \langle \mathbf{r}, \mathbf{s} \rangle + e \longrightarrow$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

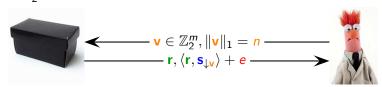
 $\mathbf{r} \leftarrow \mathbb{Z}_2^m \ \mathbf{e} \leftarrow \mathsf{Ber}_{\tau}$ 

 $\mathbf{s} \in \mathbb{Z}_2^m$   $n \leq m$ 



(日) (國) (문) (문) (문)

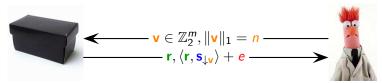
 $\mathbf{s} \in \mathbb{Z}_2^m$   $n \leq m$ 



 $\mathbf{r} \leftarrow \mathbb{Z}_2^n \ \mathbf{e} \leftarrow \mathsf{Ber}_{\tau}$ 

| m = 6, n = 3 |                                        |   |   |   |   |   |   |
|--------------|----------------------------------------|---|---|---|---|---|---|
|              | <b>s</b> =                             | 1 | 0 | 0 | 0 | 1 | 1 |
|              | <b>v</b> =                             | 0 | 0 | 1 | 1 | 1 | 0 |
|              | $\mathbf{s}_{\downarrow \mathbf{v}} =$ |   |   | 0 | 0 | 1 |   |

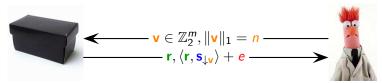
 $\mathbf{s} \in \mathbb{Z}_2^m$   $n \leq m$ 



#### $(m, n, \tau)$ Subset LPN Assumption

Hard to distinguish outputs from uniform.

 $\mathbf{s} \in \mathbb{Z}_2^m$   $n \leq m$ 

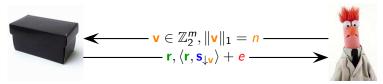


#### $(m, n, \tau)$ Subset LPN Assumption

Hard to distinguish outputs from uniform.

 $(m, n, \tau)$  Subset LPN  $\Rightarrow$   $(n, \tau)$  LPN.

 $\mathbf{s} \in \mathbb{Z}_2^m$   $n \leq m$ 



#### $(m, n, \tau)$ Subset LPN Assumption

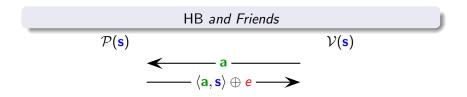
Hard to distinguish outputs from uniform.

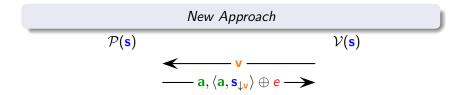
 $(m, n, \tau)$  Subset LPN  $\Rightarrow$   $(n, \tau)$  LPN.

#### Theorem

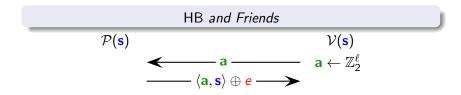
 $(n, \tau)$  LPN  $\Rightarrow$   $(m, n - d, \tau)$  Subset LPN  $(2^{-d} = negl)$ 

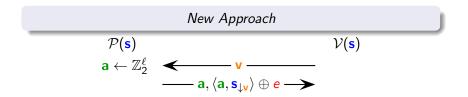
# Authentication from Subset LPN





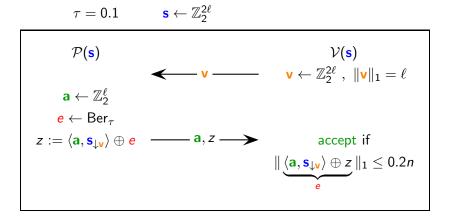
◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで





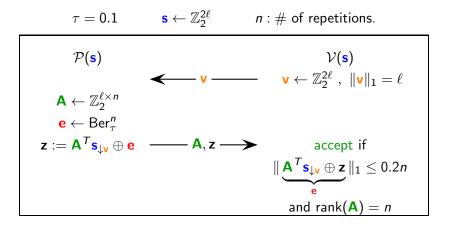
#### ▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 \_ ���?

## Active Security in Two Rounds **•••** proof



▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○

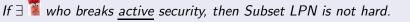
## Active Security in Two Rounds **•** to proof



## Active Security of New Protocol • to protocol



## Active Security of New Protocol . to protocol



1st Phase of Active Attack

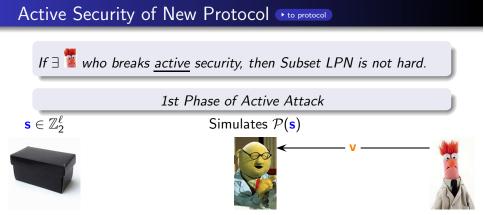
Simulates  $\mathcal{P}(\mathbf{s})$ 



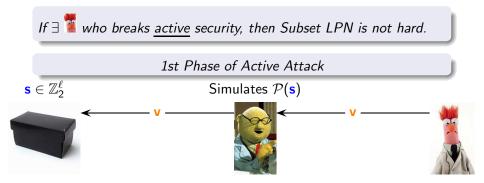
 $\mathbf{s} \in \mathbb{Z}_2^\ell$ 





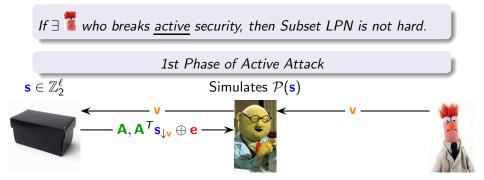


## Active Security of New Protocol • to protocol



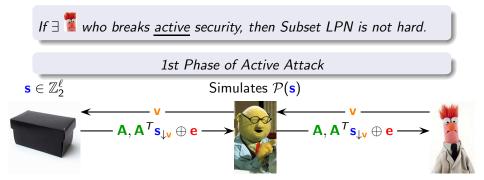
#### ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

## Active Security of New Protocol . to protocol

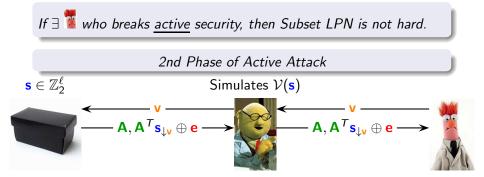


#### ▲口 > ▲母 > ▲臣 > ▲臣 > ▲臣 > ④ Q @ >

## Active Security of New Protocol • to protocol

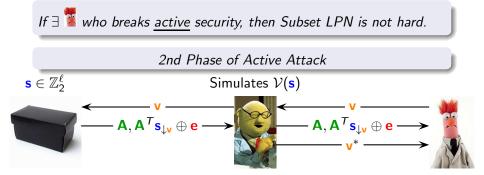


## Active Security of New Protocol . to protocol

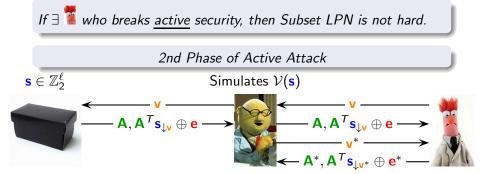


#### ▲口▶ ▲□▶ ▲臣▶ ▲臣▶ ▲臣 - の久で

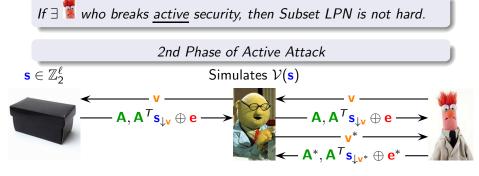
## Active Security of New Protocol • to protocol



## Active Security of New Protocol . to protocol

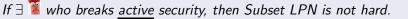


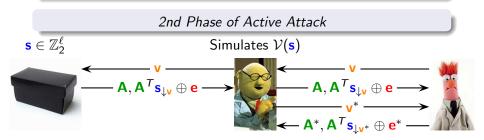
## Active Security of New Protocol . to protocol



If e ← Ber<sup>n</sup><sub>τ</sub> ⇒ simulation of P(s) perfect ⇒ ||e<sup>\*</sup>||<sub>1</sub> ≤ 0.2n.
If e uniform ⇒ s hidden ⇒ e<sup>\*</sup>uniform ⇒ ||e<sup>\*</sup>||<sub>1</sub> ≈ 0.5n.

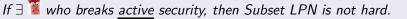
## Active Security of New Protocol . to protocol

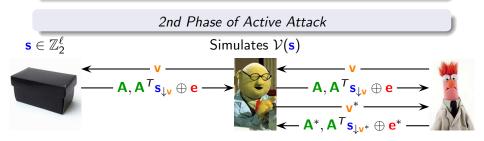




- If  $\mathbf{e} \leftarrow \operatorname{Ber}_{\tau}^{n} \Rightarrow$  simulation of  $\mathcal{P}(\mathbf{s})$  perfect  $\Rightarrow \|\mathbf{e}^{*}\|_{1} \leq 0.2n$ .
- If **e** uniform  $\Rightarrow$  **s** hidden  $\Rightarrow$  **e**<sup>\*</sup>*uniform*  $\Rightarrow$   $\|$ **e**<sup>\*</sup> $\|_1 \approx 0.5n$ .
- But... can't compute  $\|\mathbf{e}^*\|_1$  from  $\mathbf{A}^*, \mathbf{A}^T \mathbf{s}_{\downarrow \mathbf{v}^*} \oplus \mathbf{e}^*$ .

## Active Security of New Protocol . to protocol





- If  $\mathbf{e} \leftarrow \operatorname{Ber}_{\tau}^{n} \Rightarrow$  simulation of  $\mathcal{P}(\mathbf{s})$  perfect  $\Rightarrow \|\mathbf{e}^{*}\|_{1} \leq 0.2n$ .
- If **e** uniform  $\Rightarrow$  **s** hidden  $\Rightarrow$  **e**<sup>\*</sup>*uniform*  $\Rightarrow$   $\|$ **e**<sup>\*</sup> $\|_1 \approx 0.5n$ .
- But... can't compute  $\|\mathbf{e}^*\|_1$  from  $\mathbf{A}^*, \mathbf{A}^T \mathbf{s}_{\downarrow \mathbf{v}^*} \oplus \mathbf{e}^*$ .
- Simulate protocol for key  $\hat{\boldsymbol{s}} \in \mathbb{Z}_2^{2\ell}$  such that

ŝ<sub>↓v</sub>∗ known

$$\hat{\mathbf{s}}_{\downarrow \overline{\mathbf{v}^*}} = \mathbf{s}$$

#### Length of LPN secret $\ell \approx 500$ # Repetitions $n \approx 160$

#### Efficiency

- Keysize  $4\ell = 2000$  bits
- Communication  $2\ell n \approx 20 kb$
- Computation (small multiple of) ln.

#### Length of LPN secret $\ell \approx 500$ # Repetitions $n \approx 160$

#### Efficiency

- Keysize  $4\ell = 2000c$  bits
- Communication  $2\ell n \approx 20 kb/c$
- Computation (small multiple of) ln.
- Communication vs. Keysize tradeoff  $c \in \{1, \ldots, n\}$ .

#### Length of LPN secret $\ell \approx 500$ # Repetitions $n \approx 160$

#### Efficiency

- Keysize  $4\ell = 2000c$  bits
- Communication  $2\ell n \approx 20 kb/c$
- Computation (small multiple of) ln.
- Communication vs. Keysize tradeoff  $c \in \{1, \ldots, n\}$ .



Protocol with Communication & Key-size  $\ell$  and computation  $\ell \log \ell$  from "Field-LPN" (with S.Heyse, E.Kiltz, V.Lyubashevsky, C.Paar) First prototype implemented.

#### Lapin

#### Lapin: An Efficient Authentication Protocol Based on Ring-LPN

Stefan Heyse<sup>1</sup>, Eike Kiltz<sup>1</sup>, Vadim Lyubashesvky<sup>2</sup>, Christof Paar<sup>1</sup>, and Krzysztof Pietrzak<sup>3\*</sup>

> <sup>1</sup> Ruhr-Universität Bochum <sup>2</sup> INRIA / ENS, Paris <sup>3</sup> IST Austria

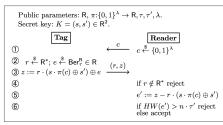


Fig. 1. Two-round Lapin authentication protocol.

#### Hardware Implementation and Side-Channel Analysis of Lapin

Lubos Gaspar<sup>1</sup>, Gaëtan Leurent<sup>1,2</sup>, and François-Xavier Standaert<sup>1</sup>

<sup>1</sup> ICTEAM/ELEN/Crypto Group, Université catholique de Louvain, Belgium. <sup>2</sup> Inria, EPI SECRET, Rocquencourt, Prance. e-mails: {lubos.gaspar,fstandae}@uclouvain.be,gaetan.leurent@inria.fr



Fig. 3. Number of clock cycles vs. number of shares (d) for software AES [16, 8], software Lapin [9] and hardware Lapin. With increase of used shares, the computation time increases quadratically for the AES and only linearly for both Lapin implementations.

#### Practical Efficiency OR Proveable Security



#### Practical Efficiency OR Proveable Security

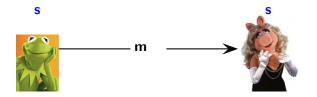


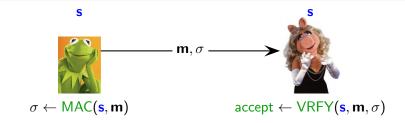
#### Efficient (cycles & gate count) AND Provably Secure

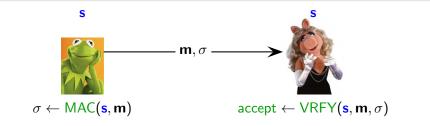


# Message Authentication

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ──○○○





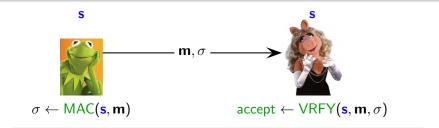


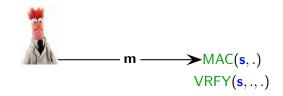
UF-CMA Security (UnForgeability under Chosen Message Attacks)

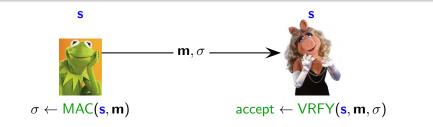


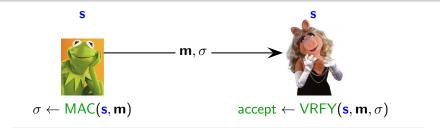
MAC(**s**, .) VRFY(**s**, ., .)

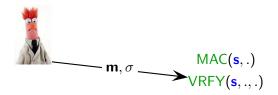
・ロト・雪 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

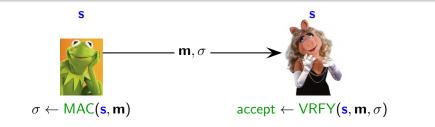




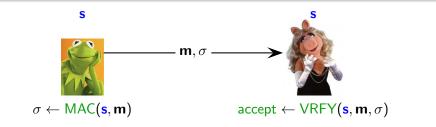




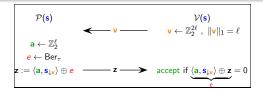


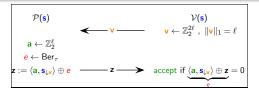


$$\checkmark \mathsf{VRFY}(\mathbf{s}, \mathbf{m}, \sigma) \underbrace{\mathsf{MAC}(\mathbf{s}, .)}_{\mathsf{VRFY}(\mathbf{s}, ., .)}$$

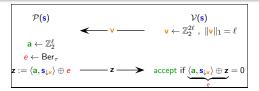


$$\mathbf{m}^*, \sigma^* \longleftarrow MAC(\mathbf{s}, .)$$
  
VRFY $(\mathbf{s}, ., .)$   
Pr[VRFY $(\mathbf{m}^*, \sigma^*) = accept$ ] = negl

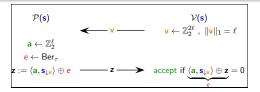




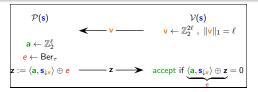
• MAC(s, v) : [A,  $A^T s_{\downarrow v} \oplus e$ ]



- MAC(s, v) : [A,  $A^T s_{\downarrow v} \oplus e$ ]
- Weakly secure MAC: no VRFY queries & random challange.



- MAC(s, v) : [A,  $A^T s_{\downarrow v} \oplus e$ ]
- Weakly secure MAC: no VRFY queries & random challange.
- $MAC(s, m) : [A, A^T s_{\downarrow v} \oplus e] \quad v = encode(m)$
- Weakly secure MAC: no VRFY queries & selective.



- MAC(s, v) : [A,  $A^T s_{\downarrow v} \oplus e$ ]
- Weakly secure MAC: no VRFY queries & random challange.
- $MAC(s, m) : [A, A^T s_{\downarrow v} \oplus e] \quad v = encode(m)$
- Weakly secure MAC: no VRFY queries & selective.
- Generic boosting to UF-CMA secure MAC:

 $\overline{MAC}(\{\mathbf{s}, \pi, h\}, \mathbf{m}) = \pi(z)$  where

$$\frac{b}{\leftarrow} \{0,1\}^{\mu} \qquad z \leftarrow \mathsf{MAC}(\mathbf{s},h(\mathbf{m},b))$$

 $h, \pi$  pairwise independent hash-function/permutation.

# Questions?





▲ロ ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ … 例 Q @



Extremely Efficient AND Provably Secure i.e. as hard to break as decoding random linear codes. Efficient, Provably secure, RKA-secure Crypo for lightweight devices.



Efficient, Provably secure, RKA-secure Crypo for lightweight devices. Why not use everywhere!





Efficient, Provably secure, RKA-secure Crypo for lightweight devices. Why not use everywhere!



• Schemes need a lot of randomness.

Efficient, Provably secure, RKA-secure Crypo for lightweight devices. Why not use everywhere!



- Schemes need a lot of randomness.
- Randomness relatively<sup>2</sup>
  - cheap on RFIDs
  - expensive on chips

#### Theorem

If  $\exists$   $\stackrel{\text{def}}{=}$  who breaks passive security of HB, then LPN is not hard.

#### Theorem

If  $\exists$ <sup> $\square$ </sup> who breaks passive security of HB, then LPN is not hard.







#### Theorem

If  $\exists$   $\boxed{2}$  who breaks passive security of HB, then LPN is not hard.



#### Theorem

If  $\exists$   $\boxed{2}$  who breaks passive security of HB, then LPN is not hard.



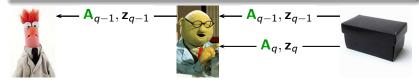
#### Theorem

If  $\exists$   $\boxed{2}$  who breaks passive security of HB, then LPN is not hard.



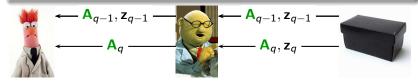
#### Theorem

If  $\exists$ <sup> $\square$ </sup> who breaks passive security of HB, then LPN is not hard.



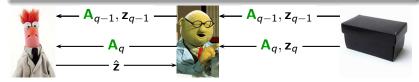
#### Theorem

If  $\exists$   $\boxed{2}$  who breaks passive security of HB, then LPN is not hard.



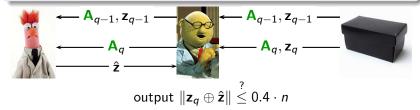
#### Theorem

If  $\exists$ <sup> $\square$ </sup> who breaks passive security of HB, then LPN is not hard.



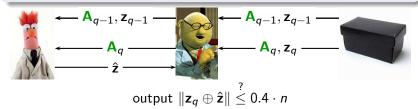
#### Theorem

If  $\exists$   $\boxed{2}$  who breaks passive security of HB, then LPN is not hard.



#### Theorem

If  $\exists$  📱 who breaks passive security of HB, then LPN is not hard.



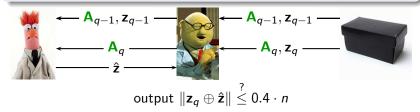
If  $\mathbf{z}_i = \mathbf{A}_i^T \mathbf{s} + \mathbf{e}_i$  with  $\mathbf{e}_i \leftarrow \text{Ber}_{\tau}^n$ 

View of k like in HB. to protocol

breaks security: \$\hfrac{1}{2} = \begin{matrix} A\_q^T \mathbf{s} \oplus \hfrac{1}{2} where ||\hfrac{1}{2}|| ≤ 0.2 · n.
Then ||\mathbf{z}\_q \oplus \hfrac{1}{2}|| = ||\begin{matrix} A\_q^T \mathbf{s} \oplus \hfrac{1}{2} \oplus A\_q^T \mathbf{s} \oplus \hfrac{1}{2} e\_q || = ||\hfrac{1}{2} \oplus \oplus \oplus n \oplus \oplus \oplus \oplus n \oplus \oplus \oplus 1 \oplus \oplus 1 \oplus \oplus \oplus 1 \oplus \oplus

#### Theorem

If  $\exists$  📱 who breaks passive security of HB, then LPN is not hard.



If 
$$\mathbf{z}_i = \mathbf{A}_i^T \mathbf{s} + \mathbf{e}_i$$
 with  $\mathbf{e}_i \leftarrow \mathsf{Ber}_{0.5}^n$ 

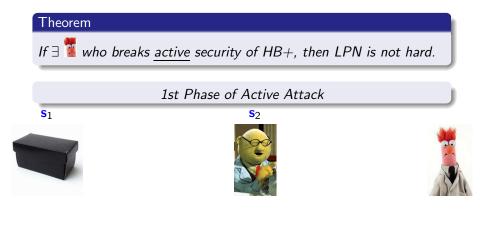
• 
$$\Rightarrow z_q \oplus \hat{z}$$
 is random.

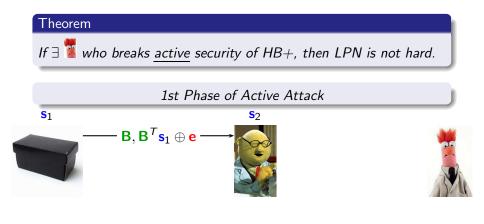
• 
$$\|\mathbf{z}_q \oplus \hat{\mathbf{z}}\| \approx 0.5 \cdot n$$

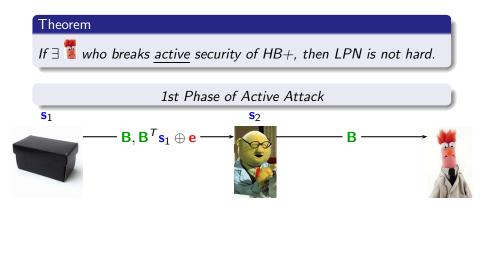
 $\Rightarrow$  output is 0

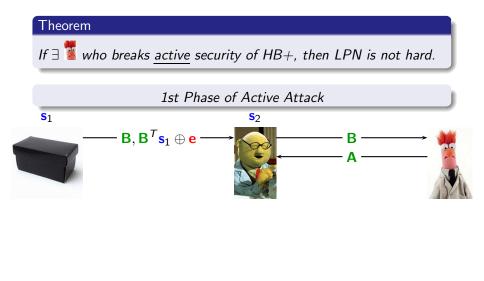
# Theorem If $\exists$ <sup> $\blacksquare$ </sup> who breaks <u>active</u> security of HB+, then LPN is not hard.

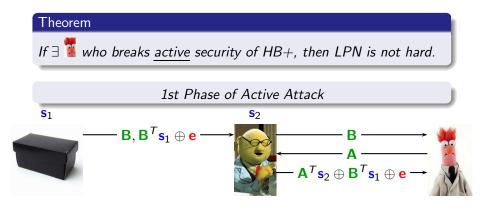
- ▲ 臣 ▶ - ▲











- If  $\mathbf{e} \leftarrow \operatorname{Ber}_{\tau}^{n}$  then perfectly simulates HB+.
- If  $\mathbf{e} \leftarrow \operatorname{Ber}_{0.5}^n$  then perfectly hides  $\mathbf{s}_2$ .

#### Theorem

If  $\exists$ <sup>Therefore</sup> who breaks <u>active</u> security of HB+, then LPN is not hard.

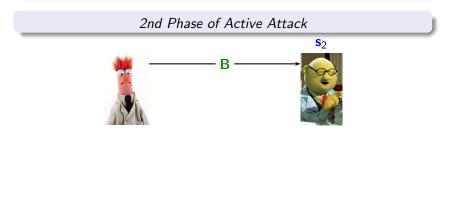






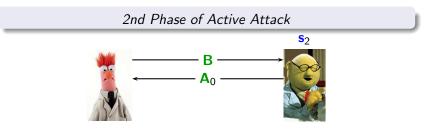
#### Theorem

If  $\exists$ <sup>Therefore</sup> who breaks <u>active</u> security of HB+, then LPN is not hard.



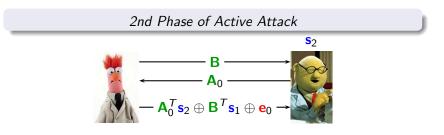
#### Theorem

If  $\exists$ <sup>Therefore</sup> who breaks <u>active</u> security of HB+, then LPN is not hard.



#### Theorem

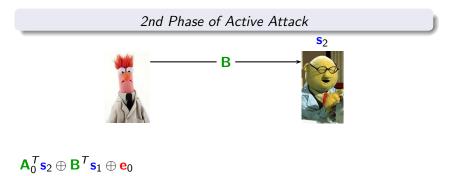
If  $\exists$ <sup>Therefore</sup> who breaks <u>active</u> security of HB+, then LPN is not hard.



### $\bm{A}_0^{\mathcal{T}} \bm{s}_2 \oplus \bm{B}^{\mathcal{T}} \bm{s}_1 \oplus \bm{e}_0$

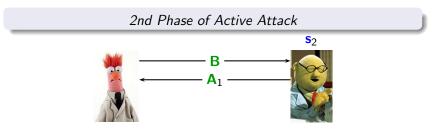
#### Theorem

If  $\exists$ <sup>Therefore</sup> who breaks <u>active</u> security of HB+, then LPN is not hard.



#### Theorem

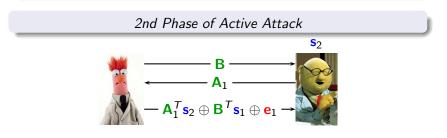
If  $\exists$ <sup>Therefore</sup> who breaks <u>active</u> security of HB+, then LPN is not hard.



#### $\bm{A}_0^{\mathcal{T}} \bm{s}_2 \oplus \bm{B}^{\mathcal{T}} \bm{s}_1 \oplus \bm{e}_0$

#### Theorem

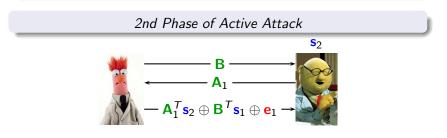
If  $\exists$ <sup>Therefore</sup> who breaks <u>active</u> security of HB+, then LPN is not hard.



 $\textbf{A}_0^{\mathcal{T}}\textbf{s}_2 \oplus \textbf{B}^{\mathcal{T}}\textbf{s}_1 \oplus \textbf{e}_0 \oplus \textbf{A}_1^{\mathcal{T}}\textbf{s}_2 \oplus \textbf{B}^{\mathcal{T}}\textbf{s}_1 \oplus \textbf{e}_1$ 

#### Theorem

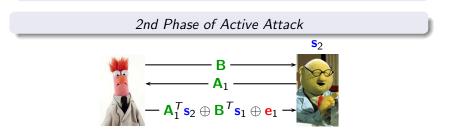
If  $\exists$ <sup>Therefore</sup> who breaks <u>active</u> security of HB+, then LPN is not hard.



 $\mathbf{A}_0^T \mathbf{s}_2 \oplus \mathbf{B}/\mathbf{1}/\mathbf{s}_1 \oplus \mathbf{e}_0 \oplus \mathbf{A}_1^T \mathbf{s}_2 \oplus \mathbf{B}/\mathbf{1}/\mathbf{s}_1 \oplus \mathbf{e}_1$ 

#### Theorem

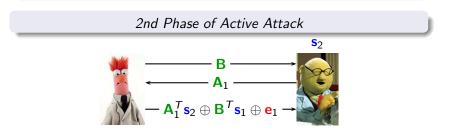
If  $\exists$ <sup>Therefore</sup> who breaks <u>active</u> security of HB+, then LPN is not hard.



 $\textbf{A}_0^T\textbf{s}_2 \oplus \textbf{B}_1^T \not \hspace{-0.15cm} \not \hspace{-0.15cm} = \textbf{e}_0 \oplus \textbf{A}_1^T\textbf{s}_2 \oplus \textbf{B}_1^T / \not \hspace{-0.15cm} \not \hspace{-0.15cm} = \textbf{e}_1 \oplus \textbf{A}_0^T\textbf{s}_2 \oplus \textbf{A}_1^T\textbf{s}_2$ 

#### Theorem

If  $\exists$ <sup> $\square$ </sup> who breaks <u>active</u> security of HB+, then LPN is not hard.

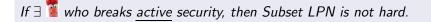


- 1st Phase good:  $\|\mathbf{e}_0\|_1, \|\mathbf{e}_1\|_1 \leq \tau' \cdot n \Rightarrow \|\mathbf{e}_0 \oplus \mathbf{e}_1\|_1 \leq 2\tau' \cdot n.$
- 1st Phase bad:  $\mathbf{A}_0^T \mathbf{s}_2 \oplus \mathbf{A}_1^T \mathbf{s}_2$  uniform  $\Rightarrow \|\mathbf{e}_0 \oplus \mathbf{e}_1\|_1 \approx 0.5 \cdot n$



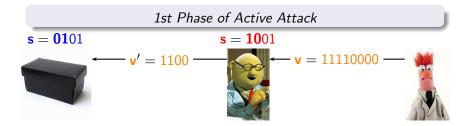
If  $\exists$  who breaks <u>active</u> security, then Subset LPN is not hard.



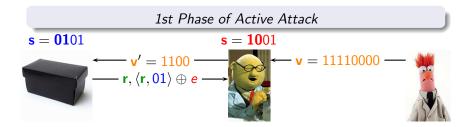




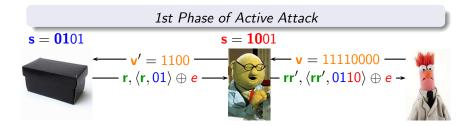
If  $\exists$ <sup> $\square$ </sup> who breaks <u>active</u> security, then Subset LPN is not hard.



If  $\exists$ <sup> $\square$ </sup> who breaks <u>active</u> security, then Subset LPN is not hard.



If  $\exists$ <sup>**s**</sup> who breaks <u>active</u> security, then Subset LPN is not hard.



- Simulate protocol with key s = 01100101.
- $e \leftarrow Ber_{\tau} \Rightarrow perfectly simulates protocol.$

• 
$$e \leftarrow \text{Ber}_{0.5} \Rightarrow \text{perfectly hides } \mathbf{s}$$
.

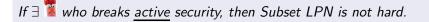
If  $\exists$ <sup>Therefore</sup> who breaks <u>active</u> security, then Subset LPN is not hard.

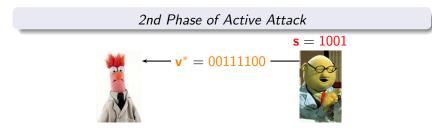




- Simulate protocol with key  $\mathbf{s} = 01100101$ .
- $e \leftarrow Ber_{\tau} \Rightarrow perfectly simulates protocol.$

• 
$$e \leftarrow \text{Ber}_{0.5} \Rightarrow \text{perfectly hides } \mathbf{s}$$
.

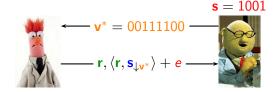




- Simulate protocol with key s = 01100101.  $s_{\downarrow v^*} = s$ .
- $e \leftarrow \text{Ber}_{\tau} \Rightarrow \text{perfectly simulates protocol.}$

• 
$$e \leftarrow \text{Ber}_{0.5} \Rightarrow \text{perfectly hides s.}$$

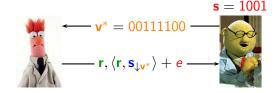
If  $\exists$ <sup>2</sup> who breaks <u>active</u> security, then Subset LPN is not hard.



- Simulate protocol with key s = 01100101.  $s_{\downarrow v^*} = s$ .
- $e \leftarrow \text{Ber}_{\tau} \Rightarrow \text{perfectly simulates protocol.}$

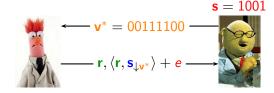
• 
$$e \leftarrow \text{Ber}_{0.5} \Rightarrow \text{perfectly hides } \mathbf{s}$$
.

If  $\exists$ <sup>2</sup> who breaks <u>active</u> security, then Subset LPN is not hard.



- Simulate protocol with key s = 01100101.  $s_{\downarrow v^*} = s$ .
- $e \leftarrow \text{Ber}_{\tau} \Rightarrow \text{perfectly simulates protocol.}$
- Error e must be low weight.
- $e \leftarrow \text{Ber}_{0.5} \Rightarrow \text{perfectly hides } \mathbf{s}$ .

If  $\exists$ <sup>2</sup> who breaks <u>active</u> security, then Subset LPN is not hard.



- Simulate protocol with key  $s=01100101,\ s_{\downarrow\nu^*}=s.$
- $e \leftarrow \text{Ber}_{\tau} \Rightarrow \text{perfectly simulates protocol.}$
- Error e must be low weight.
- $e \leftarrow \text{Ber}_{0.5} \Rightarrow \text{perfectly hides } \mathbf{s}$ .
- $\langle \mathbf{r}, \mathbf{s} \rangle$  uniform  $\Rightarrow$  error  $\mathbf{e}$  is uniform.