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The quest for lightweight authentication.

The LPN problem.

Authentication from LPN: HB and friends.

The subset LPN problem.

A new authentication protocol.

Message authentication.
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Authentication Protocols

prover P(s) A verifier V(s)

Man-In-The-Middle Security

1st phase: A can arbitrarily interact with P(s),V(s).
2nd phase: V(s) rejects if interacting with A.
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1Radio-Frequency IDentification



AES: X = {0, 1}128 , K = {0, 1}κ with κ ∈ {128, 196, 256}.
≥ 5k gates
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If AES is not an Option...

Leight-weight block ciphers: Keeloq, Present,. . .

Provably Secure (LPN Based) Authentication
Schemes. [HB’01],[JW’05],[ACPS’09],[KSS’10],. . .



Learning Parity with Noise (LPN)
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The Learning Parity with Noise Assumption

s ∈ Zn
2 , 0 < τ < 0.5

r2 ← Zn
2 e2 ← Berτ

r1, ⟨r1, s⟩+ e1
r2, ⟨r2, s⟩+ e2

...

(q, n, τ) LPN assumption (Search Version)

Hard to find s.

(q, n, τ) LPN assumption (Decisional Version)

Hard to distinguish outputs from uniformly random.



Hardness of LPN

(Search) LPN equivalent to decoding random linear codes.

Search & decision polynomially equivalent.

Best (quantum) algorithms run in time Θ(2n/ log n).



Authentication from LPN



The HB protocol [Hopper and Blum AC’01]
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The HB protocol [Hopper and Blum AC’01]

τ = 0.1 s← Zℓ
2

P(s) V(s)
a← Zℓ

2

e ← Berτ

z := ⟨a, s⟩ ⊕ e accept if ⟨a, s⟩ ⊕ z
︸ ︷︷ ︸

e

= 0

a

z

Secure against passive attacks from LPN. to proof

Correctness error 0.1. Soundness error 0.5 + negl.

Can be amplified repeating n times ⇒ Errors become 2−Θ(n).

Not secure against active attacks:
1 ask for ⟨a, s⟩ ⊕ e i (for several i) ⇒ majority is ⟨a, s⟩ w.h.p..
2 recover s from ⟨aj , s⟩ (j = 1, . . . , ℓ) using Gaussian elimination.



The HB+ protocol [Juels and Weis Crypto’05]
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The HB+ protocol [Juels and Weis Crypto’05]

τ = 0.1 s′, s← Zℓ
2

P(s′, s) V(s′, s)
b← Zℓ

2

a← Zℓ
2

e ← Berτ

z := ⟨b, s′⟩ ⊕ ⟨a, s⟩ ⊕ e accept if

⟨b, s′⟩ ⊕ ⟨a, s⟩ ⊕ z = 0

b

a

z

Secure against active attacks. to proof

Can be amplified by repetition [KS’06].
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! Active Security.

" 3 Rounds (Prover must be stateful).

" Loose reduction: LPN ε-hard ⇒ HB
√
ε-secure.

" Reduction not Quantum (No Cloning Theorem.)
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HB

! Round Optimal (2 Rounds).

! Tight reduction: LPN ε-hard ⇒ HB ε-secure.

" Passive security.

HB+

! Active Security.

" 3 Rounds (Prover must be stateful).

" Loose reduction: LPN ε-hard ⇒ HB
√
ε-secure.

" Reduction not Quantum (No Cloning Theorem.)

?
a0

a1

z0

z1
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New Authentication Protocol

! Active Security.

! Round Optimal (2 Rounds).

! Tight (Quantum) Reduction.



Subset LPN
Subspace LWE, K.Pietrzak, Manuscript 2011.
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Subset LPN

s ∈ Zm
2 n ≤ m

r← Zn
2 e ← Berτ

v ∈ Zm
2 , ∥v∥1 = n

r, ⟨r, s↓v⟩+ e

m = 6, n = 3

s = 1 0 0 0 1 1
v = 0 0 1 1 1 0
s↓v = 0 0 1
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Subset LPN

s ∈ Zm
2 n ≤ m

v ∈ Zm
2 , ∥v∥1 = n

r, ⟨r, s↓v⟩+ e

(m, n, τ) Subset LPN Assumption

Hard to distinguish outputs from uniform.

(m, n, τ) Subset LPN ⇒ (n, τ) LPN.

Theorem

(n, τ) LPN ⇒ (m, n − d , τ) Subset LPN (2−d = negl)



Authentication from Subset LPN



HB and Friends

P(s) V(s)
a

⟨a, s⟩ ⊕ e

New Approach

P(s) V(s)
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HB and Friends

P(s) V(s)
a← Zℓ

2a

⟨a, s⟩ ⊕ e

New Approach

P(s) V(s)
a← Zℓ

2 v

a, ⟨a, s↓v⟩ ⊕ e



Active Security in Two Rounds to proof

τ = 0.1 s← Z2ℓ
2

P(s) V(s)
v← Z2ℓ

2 , ∥v∥1 = ℓ

a← Zℓ
2

e ← Berτ

z := ⟨a, s↓v⟩ ⊕ e accept if

∥ ⟨a, s↓v⟩ ⊕ z
︸ ︷︷ ︸

e

∥1 ≤ 0.2n
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Active Security in Two Rounds to proof

τ = 0.1 s← Z2ℓ
2 n : # of repetitions.

P(s) V(s)
v← Z2ℓ

2 , ∥v∥1 = ℓ

A← Z
ℓ×n
2

e← Bernτ
z := AT s↓v ⊕ e accept if

∥AT
s↓v ⊕ z

︸ ︷︷ ︸

e

∥1 ≤ 0.2n

and rank(A) = n

v

A, z
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2nd Phase of Active Attack

s ∈ Zℓ
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vv
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Active Security of New Protocol to protocol

If ∃ who breaks active security, then Subset LPN is not hard.

2nd Phase of Active Attack

s ∈ Zℓ
2 Simulates V(s)

vv

A,AT s↓v ⊕ e A,AT s↓v ⊕ e

v∗

A∗,AT s↓v∗ ⊕ e∗

If e← Bernτ ⇒ simulation of P(s) perfect ⇒ ∥e∗∥1 ≤ 0.2n.
If e uniform ⇒ s hidden ⇒ e∗uniform ⇒ ∥e∗∥1 ≈ 0.5n.
But... can’t compute ∥e∗∥1 from A∗,AT s↓v∗ ⊕ e∗.
Simulate protocol for key ŝ ∈ Z2ℓ

2 such that

ŝ↓v∗ known ŝ↓v∗ = s
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Length of LPN secret ℓ ≈ 500 # Repetitions n ≈ 160

Efficiency

Keysize 4ℓ = 2000c bits

Communication 2ℓn ≈ 20kb/c

Computation (small multiple of) ℓn.

Communication vs. Keysize tradeoff c ∈ {1, . . . , n}.

Protocol with Communication & Key-size ℓ and computation ℓ log ℓ
from “Field-LPN” (with S.Heyse, E.Kiltz, V.Lyubashevsky, C.Paar)
First prototype implemented.
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The Provable Security Mantra

Practical Efficiency OR Proveable Security

Efficient (cycles & gate count) AND Provably Secure
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Message Authentication Codes

s s

σ ← MAC(s,m) accept← VRFY(s,m,σ)

m,σ

UF-CMA Security (UnForgeability under Chosen Message Attacks)

m∗,σ∗ MAC(s, .)

VRFY(s, ., .)

Pr[VRFY(m∗,σ∗) = accept] = negl
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MAC from Identification

P(s) V(s)
v← Z2ℓ

2 , ∥v∥1 = ℓ

a← Zℓ
2

e ← Berτ

z := ⟨a, s↓v⟩ ⊕ e accept if ⟨a, s↓v⟩ ⊕ z
︸ ︷︷ ︸

e

= 0

v

z

MAC(s, v) : [A , AT s↓v ⊕ e]

Weakly secure MAC: no VRFY queries & random challange.

MAC(s,m) : [A , AT s↓v ⊕ e] v = encode(m)

Weakly secure MAC: no VRFY queries & selective.

Generic boosting to UF-CMA secure MAC:

MAC({s,π, h},m) = π(z) where

b
U← {0, 1}µ z ← MAC(s, h(m, b))

h,π pairwise independent hash-function/permutation.



Questions?
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The Provable Security Mantra

Practical Efficiency OR Provable Security

RSA Encryption:
N = pq

ENC (pk ,m) = mpk mod N
DEC (sk , c) = csk mod N

Extremely Efficient AND Provably Secure
i.e. as hard to break as decoding random linear codes.
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Final Disclaimer

Efficient, Provably secure, RKA-secure Crypo for lightweight
devices. Why not use everywhere!

Schemes need a lot of randomness.

Randomness relatively2

cheap on RFIDs
expensive on chips

2compared to computation



Passive Security of HB

Theorem

If ∃ who breaks passive security of HB, then LPN is not hard.



Passive Security of HB

Theorem

If ∃ who breaks passive security of HB, then LPN is not hard.



Passive Security of HB

Theorem

If ∃ who breaks passive security of HB, then LPN is not hard.

A1, z1A1, z1



Passive Security of HB

Theorem

If ∃ who breaks passive security of HB, then LPN is not hard.

A1, z1A1, z1 A2, z2A2, z2



Passive Security of HB

Theorem

If ∃ who breaks passive security of HB, then LPN is not hard.

A1, z1A1, z1 A2, z2A2, z2 Aq−1, zq−1Aq−1, zq−1



Passive Security of HB

Theorem

If ∃ who breaks passive security of HB, then LPN is not hard.

A1, z1A1, z1 A2, z2A2, z2 Aq−1, zq−1Aq−1, zq−1

Aq , zq



Passive Security of HB

Theorem

If ∃ who breaks passive security of HB, then LPN is not hard.

A1, z1A1, z1 A2, z2A2, z2 Aq−1, zq−1Aq−1, zq−1

Aq , zqAq



Passive Security of HB

Theorem

If ∃ who breaks passive security of HB, then LPN is not hard.

A1, z1A1, z1 A2, z2A2, z2 Aq−1, zq−1Aq−1, zq−1

Aq , zqAq

ẑ
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Passive Security of HB

Theorem

If ∃ who breaks passive security of HB, then LPN is not hard.

A1, z1A1, z1 A2, z2A2, z2 Aq−1, zq−1Aq−1, zq−1

Aq , zqAq

ẑ

output ∥zq ⊕ ẑ∥
?
≤ 0.4 · n

If zi = AT
i s+ ei with ei ← Bernτ

View of like in HB. to protocol

breaks security: ẑ = AT
q s⊕ ê where ∥ê∥ ≤ 0.2 · n.

Then ∥zq ⊕ ẑ∥ = ∥AT
q s⊕ ê⊕AT

q s⊕ eq∥ = ∥ê⊕ eq∥ ≈ 0.3 · n

⇒ output is 1



Passive Security of HB

Theorem

If ∃ who breaks passive security of HB, then LPN is not hard.

A1, z1A1, z1 A2, z2A2, z2 Aq−1, zq−1Aq−1, zq−1

Aq , zqAq

ẑ

output ∥zq ⊕ ẑ∥
?
≤ 0.4 · n

If zi = AT
i s+ ei with ei ← Bern0.5

⇒ zq ⊕ ẑ is random.

∥zq ⊕ ẑ∥ ≈ 0.5 · n

⇒ output is 0
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Active Security of HB+

Theorem

If ∃ who breaks active security of HB+, then LPN is not hard.

1st Phase of Active Attack
s1 s2

B,BT
s1 ⊕ e B

A

AT s2 ⊕ B
T
s1 ⊕ e

If e← Bernτ then perfectly simulates HB+.

If e← Bern0.5 then perfectly hides s2.
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Active Security of HB+

Theorem

If ∃ who breaks active security of HB+, then LPN is not hard.

2nd Phase of Active Attack
s2

B

A1

AT
1 s2 ⊕ B

T
s1 ⊕ e1

A
T
0 s2//////⊕B

T
s1//////⊕ e0 ⊕A

T
1 s2//////⊕B

T
s1//////⊕ e1 ⊕A

T
0 s2 ⊕ A

T
1 s2//////////////// = e0 ⊕ e1

1st Phase good: ∥e0∥1, ∥e1∥1 ≤ τ ′ · n⇒ ∥e0 ⊕ e1∥1 ≤ 2τ ′ · n.
1st Phase bad: AT

0 s2 ⊕ AT
1 s2 uniform ⇒ ∥e0 ⊕ e1∥1 ≈ 0.5 · n
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If ∃ who breaks active security, then Subset LPN is not hard.

1st Phase of Active Attack

s = 0101 s = 1001

v = 11110000v′ = 1100
r, ⟨r, 01⟩ ⊕ e rr′, ⟨rr′, 0110⟩ ⊕ e

Simulate protocol with key s = 01100101.

e ← Berτ ⇒ perfectly simulates protocol.
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Active Security of New Protocol to protocol

If ∃ who breaks active security, then Subset LPN is not hard.

2nd Phase of Active Attack

s = 1001

v∗ = 00111100

r, ⟨r, s↓v∗⟩+ e

Simulate protocol with key s = 01100101. s↓v∗ = s.

e ← Berτ ⇒ perfectly simulates protocol.

Error e must be low weight.

e ← Ber0.5 ⇒ perfectly hides s.

⟨r, s⟩ uniform ⇒ error e is uniform.


