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o The quest for lightweight authentication.
o The LPN problem.

o Authentication from LPN: HB and friends.
o The subset LPN problem.

o A new authentication protocol.

o Message authentication.
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Authentication Protocols

prover P(s) A verifier V(s)

Ist phase: A can arbitrarily interact with P(s), V(s).
2nd phase: V(s) rejects if interacting with A.
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prover P(s) verifier V(s)

@ RFID! tags: 1k-10k gates, 200-2k for security.
@ AES > bk gates.
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!Radio-Frequency IDentification
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Leight-weight block ciphers: Keeloq, Present,. . .
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Provably Secure (LPN Based) Authentication
Schemes. [HB'01],[JW'05],[ACPS’09],[KSS'10].. ..
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Learning Parity with Noise (LPN)
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The Learning Parity with Noise Assumption

scZ5,0<7<05

rp <— Zy ey < Ber;

(g,n,7) LPN assumption (Search Version)
Hard to find s.

(g, n,7) LPN assumption (Decisional Version)

Hard to distinguish outputs from uniformly random.




Hardness of LPN

@ (Search) LPN equivalent to decoding random linear codes.

@ Search & decision polynomially equivalent.

@ Best (quantum) algorithms run in time ©(2"/'°g").
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The HB protocol

=01 s« 75
P(s) V(s)
«<——a a< Zg
e < Ber;
z:=(a,s)De z > accept if (a,s) ®z=0
T

@ Secure against passive attacks from LPN.
@ Correctness error 0.1. Soundness error 0.5 + negl.

@ Can be amplified repeating n times = Errors become 2-0(n),
@ Not secure against active attacks:
@ ask for (a,s) @ e; (for several /) = majority is (a,s) w.h.p..
© recover s from (aj,s) (j = 1,...,¢) using Gaussian elimination.
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The HB™ protocol

=01 s',s + 75
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@ Secure against active attacks.



The HB™ protocol

=01 s',s + 75
P(s',s) V(s',s)
b + Z§ —b—>
<—a— a« 75
e + Ber;
z:=(b,s)D(a,s) e —z—> accept if
(b,sY®(a,s) z=0

@ Secure against active attacks.
@ Can be amplified by repetition [KS'06].



HB

© Round Optimal (2 Rounds).

© Tight reduction: LPN --hard = HB --secure.
© Passive security.

HB+-

© Active Security.

® 3 Rounds (Prover must be stateful).

® Loose reduction: LPN --hard == HB /--secure.
® Reduction not Quantum (No Cloning Theorem.)
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HB

© Round Optimal (2 Rounds).

© Tight reduction: LPN --hard = HB --secure.
© Passive security.

HB+

© Active Security.

® 3 Rounds (Prover must be stateful).

® Loose reduction: LPN --hard = HB ./--secure.
® Reduction not Quantum (No Cloning Theorem.)
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New Authentication Protocol

© Active Security.
© Round Optimal (2 Rounds).
© Tight (Quantum) Reduction.




Subset LPN

Subspace LWE, K.Pietrzak, Manuscript 2011. J




scZy




scZy

r< 23 e < Ber;




scZy

r< 23 e < Ber;



Subset LPN

scZy

W




Subset LPN

scZy

<——veZf |1 =
—r,(r,s\”—i—e%

r< 73 e < Ber;




Subset LPN

scZy

<—veZy v =n——
—r,(r,s\”—i—e%

(m, n,7) Subset LPN Assumption

Hard to distinguish outputs from uniform.




Subset LPN

scZy

<—veZy v =n——
—r,(r,s\”—i—e%

(m, n,7) Subset LPN Assumption

Hard to distinguish outputs from uniform.

(m,n, 1) LPN = (n,7) LPN.



Subset LPN

scZy

<—veZy v =n——
—r,(r,s\”—i—e%

(m, n,7) Subset LPN Assumption

Hard to distinguish outputs from uniform.

(m,n, 1) LPN = (n,7) LPN.

(n,7) LPN = (m,n—d, ) LPN (279 = negl)
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P(s) V(s)
<« a—— a: 7
(a,s) e —>
New Approach )
P(s) V(s)
a«+ 75 <

a,(a,s;,) Pe—>



Active Security in Two Rounds et

7=01 s+ 73
P(s) V(s)
< <75 vl =¢
a« 75
e + Ber;
z:=(a,s;,)De 3,z —> accept if
| (a,sp) @ z|l1 <0.2n
—




Active Security in Two Rounds et

7=0.1 S Z%e n : # of repetitions.
P(s) V(s)
< 23, vl =¢
A — 75"
e < Ber]
z .= ATs¢ de Az > accept if
|ATs,, @z]|; <0.2n
~———
e
and rank(A) =n
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Active Security of New Protocol ' srotec

If 3 E who breaks active security, then Subset LPN is not hard. J

2nd Phase of Active Attack J
s€Zb Simulates V(s)

o If e « Ber = simulation of P(s) perfect = ||e*|1 < 0.2n.
@ If e uniform = s hidden = e*uniform = ||e*||; ~ 0.5n.

@ But... can't compute [e*||; from A*,ATs - & e*.

@ Simulate protocol for key § € Z%e such that

S+ known §¢—*:s
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Length of LPN secret ¢ ~ 500 # Repetitions n ~ 160

o Keysize 4¢ = 2000c¢ bits
@ Communication 2¢n ~ 20kb/
@ Computation (small multiple of) ¢n.

@ Communication vs. Keysize tradeoff ¢ € {1,...,n}.

Protocol with Communication & Key-size ¢ and computation ¢ log ¢
from “Field-LPN" (with S.Heyse, E.Kiltz, V.Lyubashevsky, C.Paar)
First prototype implemented.




Lapin

Hardware Implementation and

Lapin: An Efficient Authentication Protocol Based on Ring-LPN Side-Channel Analysis of Lapin
Stefan Heyse', Eike Kiltz!, Vadim Lyubashesvky?, Lubos Gaspar!, Gaétan Leurent!:2, and Frangois-Xavier Standaert!
Christof Paar’, and Krzysztof Pietrzak*
. - ! ICTEAM/ELEN /Crypto Group, Université catholique de Louvain, Belgium.
Ruhr-Universitit Bochum 2y, EPI SECRET, Ro France.
2 INRIA / ENS, Paris nria, cquencourt, France.

3 IST Austria e-mails: {1ubos.gaspar, fstandae}@uclouvain.be,gaetan.leurent@inria.fr

Public parameters: R, 7:{0,1}* = R, 7,7, A.
Secret key: K = (s,5') € R%.

¢ $ X
—— &0

0] 10°
B s # of shares  AES @ Lapin % Lapin
@ &Ry e&BefeR %) d softw. (16,8)  softw. [9] b hardw,
’ i 1 112500 20977

® (sme)®s)Be — 2 225016

. ) 3 337532
@ if r ¢ R* reject 4 450048

, 5 562564 104945
@ e z—17- (s . 7((5) (=¥} ) 6 5 675080 125937
7 2770661 787596 146929 123 45 67

® if HW(e') > n -7’ reject Number of shares d

else accept

Fig. 3. Number of clock cycles vs

number of shares (d) for software AES [16,8], soft-
ware Lapin [9] and hardware Lapin.

th increase of used shares, the computation time
increases quadratically for the AES and only linearly for both Lapin implementations.

Fig. 1. Two-round Lapin authentication protocol.
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The Provable Security Mantra

Practical Efficiency OR Proveable Security )

Efficient (cycles & gate count) AND Provably Secure |
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o + MAC(s, m) accept « VRFY(s,m, o)

UF-CMA Security (UnForgeability under Chosen Message Attacks)J

MAC(s,.)
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Message Authentication Codes

o + MAC(s, m) accept « VRFY(s,m, o)

UF-CMA Security (UnForgeability under Chosen Message Attacks)J

MAC(s,.)
VRFY(s, .,.)

Pr[VRFY(m*, c*) = accept] = negl
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P(s) V(s)
<V — 73, vh=¢
a<+ 7§
e « Ber,

z:=(a,s),) De

z—> accept if (a,s),) ®z=0
N o i

o MAC(s,v): [A, ATs), @ e]

@ Weakly secure MAC: no VRFY queries & random challange.
o MAC(s,m):[A, ATs|, ®e] = encode(m)
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MAC from Identification

P(s) V(s)
<V — 73, vh=¢
a<+ 7§
e « Ber,

z:=(a,s),) De z—> accept if (a,s),) ®z=0
-

MAC(s,v) : [A, ATs), ®e]

Weakly secure MAC: no VRFY queries & random challange.
MAC(s,m) : [A, ATs, @ €] = encode(m)

Weakly secure MAC: no VRFY queries & selective.

Generic boosting to UF-CMA secure MAC:

e ¢ ¢ ¢ ¢

MAC({s, 7, h},m) = w(z) where
b& {0,1}"  z+« MAC(s, h(m, b))
h, 7 pairwise independent hash-function/permutation.
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The Provable Security Mantra

Practical Efficiency OR Provable Security )

RSA Encryption:
N = pq
ENC(pk, m) = mPX mod N
DEC(sk,c) = ¢ mod N

—
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The Provable Security Mantra

Practical Efficiency OR Provable Security )
g RSA Encryption:
HHHHHHHH N = pq
litditat. ENC(pk, m) = mPX mod N
o a g DEC(sk,c) = ¢ mod N

Extremely Efficient AND Provably Secure J

i.e. as hard to break as decoding random linear codes.
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Final Disclaimer

Efficient, Provably secure, RKA-secure Crypo for lightweight
devices. Why not use everywhere!

@ Schemes need a lot of randomness.
@ Randomness relatively?

@ cheap on RFIDs
@ expensive on chips

2compared to computation
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Passive Security of HB
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If 3 g who breaks passive security of HB, then LPN is not hard.

* —Ag-1,2g-1 — -

(3
N 78 Aq
l.& A 2

Ifz; = Als + e; with e; < Ber”
o View of? like in HB.
° g breaks security: z = A;s @ & where ||€]] < 0.2 n.

® Then ||zg ® 2| = HAZ{SEBé@A;—sEBeqH =|édeqy|| = 0.3-n

7
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7
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Ifz; = ATs + e; with e; + Ber{
® = 25D 2 is random.
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If 3 g who breaks active security of HB+, then LPN is not hard.
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P2 © Bt © eo © i © BIst @ e1 @ Ayt = eo ® ex

@ 1st Phase good: |egl|1,]le1ll1 <7 -n=|eo Deils <27 - n.
@ 1st Phase bad: AOTSQ &) AIS2 uniform = |leg © e1|l1 = 0.5 - n
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If 3 : who breaks active security, then Subset LPN is not hard. J

2nd Phase of Active Attack J
s = 1001

&l\

Simulate protocol with key s = 01100101. s}, =s.

e < Ber; = perfectly simulates protocol.

°
°

@ Error e must be low weight.

@ e < Bergs = perfectly hides s.
°

(r,s) uniform = error e is uniform.



