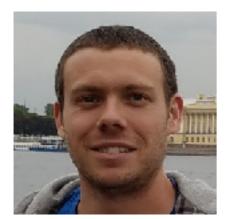
On the Fine-Grained Hardness of Lattice Problems

Noah Stephens-Davidowitz



Huck Bennett

Alexander Golovnev

Divesh Aggarwal

Noah Stephens-Davidowitz

Noah Stephens-Davidowitz

• Motivation

- Motivation
 - How secure is lattice-based crypto?

- Motivation
 - How secure is lattice-based crypto?
 - How sure are we?

- Motivation
 - How secure is lattice-based crypto?
 - How sure are we?
- Summary of results

- Motivation
 - How secure is lattice-based crypto?
 - How sure are we?
- Summary of results
- Fine-grained hardness of CVP

- Motivation
 - How secure is lattice-based crypto?
 - How sure are we?
- Summary of results
- Fine-grained hardness of CVP
- Fine-grained hardness of SVP

- Motivation
 - How secure is lattice-based crypto?
 - How sure are we?
- Summary of results
- Fine-grained hardness of CVP
- Fine-grained hardness of SVP
- Where do we go from here?

Act I:

How confident are we in our security claims?

Noah Stephens-Davidowitz

Noah Stephens-Davidowitz

Noah Stephens-Davidowitz

Quantitative Security Claims

LWE's (n, q, s)	Others	NIST's category
(n = 576, q = 8192, s = 3)	l = KeyLen = 128	AES-128, SHA3-256
(n = 704, q = 8192, s = 3)	l = KeyLen = 192	AES-192, SHA3-384
(n = 832, q = 8192, s = 3)	l = KeyLen = 256	AES-256

Noah Stephens-Davidowitz

Quantitative Security Claims

			Known	Known	Best
Attack	75	b	Classical	Quantum	Plausible
BCNS p	roposa	1 [22]:	$q = 2^{32} - $	1, n = 1024	$\varsigma = 3.192$
Primal	1062	296	86	78	61
			86		61
NTRUE	NCRYI	PT [54]: $q = 2^{12}$,	n = 743, ç =	$\approx \sqrt{2/3}$
Primal	613	603	176	159	125
Dual	635	600	175	159	124
JARJAR	: q = 1	2289,	$n = 512, \varsigma$	$=\sqrt{12}$	
			131		93
Dual	602	448	131	118	92
NewHo	OPE: q	= 122	89, n = 102	$4, \varsigma = \sqrt{8}$	
Primal	1100	967	282	256	200
Dual	1099	962	281	255	199

Scheme	Attack	R	ound	ed G	aussia	m	Post	-redu	ction
		m	ь	С	Q	Р	C	Q	Р
Challenge	Primal	338	266			-			-
Challenge	Dual	331	263			-	-		-
Classical	Primal	549	442	138	126	100	132	120	95
Classical	Dual	544	438	136	124	99	130	119	94
Berry and ad	Primal	716	489	151	138	110	145	132	104
Recommended	Dual	737	485	150	137	109	144	130	103
Desconded	Primal	793	581	179	163	129	178	162	129
Paranoid	Dual	833	576	177	161	128	177	161	128

LWE's (n, q, s)	Others	NIST's category
(n = 576, q = 8192, s = 3)	l = KeyLen = 128	AES-128, SHA3-256
(n = 704, q = 8192, s = 3)	l = KeyLen = 192	AES-192, SHA3-384
(n = 832, q = 8192, s = 3)	l = KeyLen = 256	AES-256

Noah Stephens-Davidowitz

RSA Number	Decimal digits	Binary digits	Cash prize offered	Factored on	Factored by
RSA-100	100	330	US\$1,000 ^[4]	April 1, 1991 ^[5]	Arjen K. Lenstra
RSA-110	110	364	US\$4,429 ^[4]	April 14, 1992 ^[5]	Arjen K. Lenstra and M.S. Manasse
RSA-120	120	397	\$5,898 ^[4]	July 9, 1993 ^[6]	T. Denny et al.
RSA-129 [**]	129	426	\$100 USD	April 26, 1994 ^[5]	Arjen K. Lenstra et al.
RSA-130	130	430	US\$14,527 ^[4]	April 10, 1996	Arjen K. Lenstra et al.
RSA-140	140	463	US\$17,226	February 2, 1999	Herman te Riele et al.
RSA-150	150	496		April 16, 2004	Kazumaro Aoki et al.
RSA-155	155	512	\$9,383 ^[4]	August 22, 1999	Herman te Riele et al.
RSA-160	160	530		April 1, 2003	Jens Franke et al., University of Bonn
RSA-170 [*]	170	563		December 29, 2009	D. Bonenberger and M. Krone [""]
RSA-576	174	576	\$10,000 USD	December 3, 2003	Jens Franke et al., University of Bonn
RSA-180 [*]	180	596		May 8, 2010	S. A. Danilov and I. A. Popovyan, Moscow State University ^[7]
RSA-190 [*]	190	629		November 8, 2010	A. Timofeev and I. A. Popovyan
RSA-640	193	640	\$20,000 USD	November 2, 2005	Jens Franke et al., University of Bonn
RSA-200 [*] ?	200	663		May 9, 2005	Jens Franke et al., University of Bonn
RSA-210 [*]	210	696		September 26, 2013 ^[8]	Ryan Propper
RSA-704 [*]	212	704	\$30,000 USD	July 2, 2012	Shi Bai, Emmanuel Thomé and Paul Zimmermann
RSA-220	220	729		May 13, 2016	S. Bai, P. Gaudry, A. Kruppa, E. Thomé and P. Zimmermann
RSA-230	230	762			
RSA-232	232	768			
RSA-768 [*]	232	768	\$50,000 USD	December 12, 2009	Thorsten Kleinjung et al.

Noah Stephens-Davidowitz

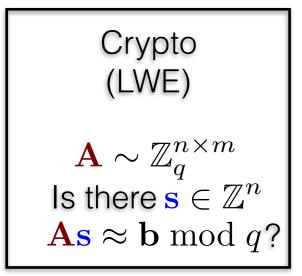
RSA Number	Decimal digits	Binary digits	Cash prize offered	Factored on	Factored by
RSA-100	100	330	US\$1,000 ^[4]	April 1, 1991 ^[5]	Arjen K. Lenstra
RSA-110	110	364	US\$4,429 ^[4]	April 14, 1992 ^[5]	Arjen K. Lenstra and M.S. Manasse
RSA-120	120	397	\$5,898 ^[4]	July 9, 1993 ^[6]	T. Denny et al.
RSA-129 [**]	129	426	\$100 USD	April 26, 1994 ^[5]	Arjen K. Lenstra et al.
RSA-130	130	430	LIS\$14 527 ^[4]	April 10, 1996	Arien K. Lenstra et al.
RSA-140	¹⁴ Oria	inal r	ecomm	ended R	SA key size
RSA-150	15_		coomin	chided h	
RSA-155	155	512	\$9,383 ^[4]	August 22, 1999	Herman te Riele et al.
RSA-160	160	530		April 1, 2003	Jens Franke et al., University of Bonn
RSA-170 [*]	170	563		December 29, 2009	D. Bonenberger and M. Krone [***]
RSA-576	174	576	\$10,000 USD	December 3, 2003	Jens Franke et al., University of Bonn
RSA-180 [*]	180	596		May 8, 2010	S. A. Danilov and I. A. Popovyan, Moscow State University ^[7]
RSA-190 [*]	190	629		November 8, 2010	A. Timofeev and I. A. Popovyan
RSA-640	193	640	\$20,000 USD	November 2, 2005	Jens Franke et al., University of Bonn
RSA-200 [1] ?	200	663		May 9, 2005	Jens Franke et al., University of Bonn
RSA-210 [*]	210	696		September 26, 2013 ^[8]	Ryan Propper
RSA-704 [*]	212	704	\$30,000 USD	July 2, 2012	Shi Bai, Emmanuel Thomé and Paul Zimmermann
RSA-220	220	729		May 13, 2016	S. Bai, P. Gaudry, A. Kruppa, E. Thomé and P. Zimmermann
RSA-230	230	762			
RSA-232	232	768			
RSA-768 [*]	232	768	\$50,000 USD	December 12, 2009	Thorsten Kleinjung et al.

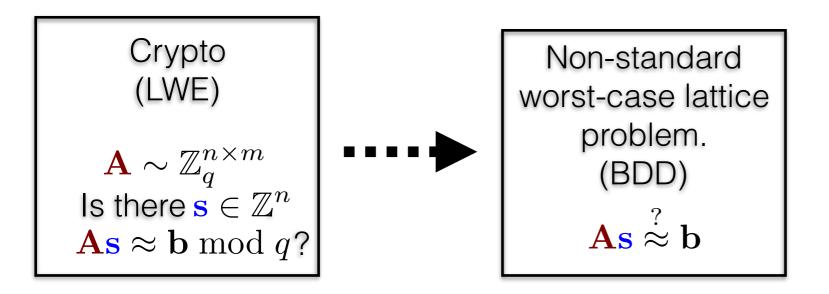
Noah Stephens-Davidowitz

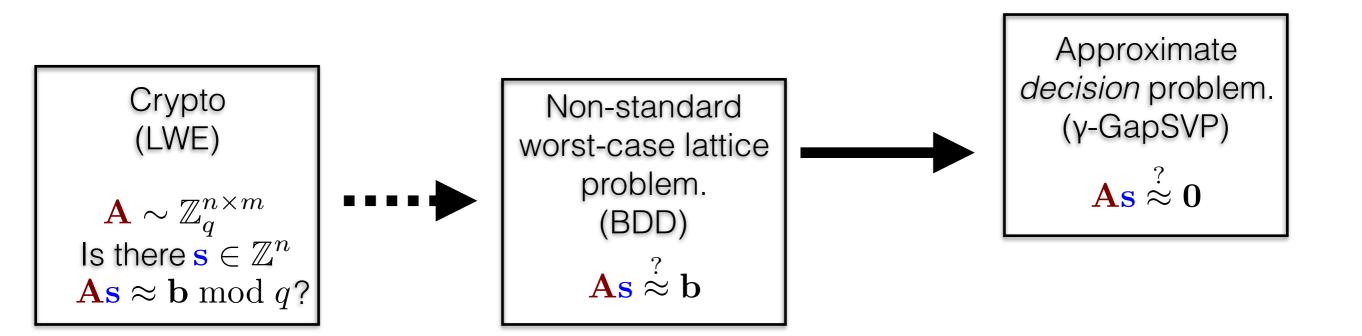
RSA Number	Decimal digits	Binary digits	Cash prize offered	Factored on	Factored by
RSA-100	100	330	US\$1,000 ^[4]	April 1, 1991 ^[5]	Arjen K. Lenstra
RSA-110	110	364	US\$4,429 ^[4]	April 14, 1992 ^[5]	Arjen K. Lenstra and M.S. Manasse
RSA-120	120	397	\$5,898 ^[4]	July 9, 1993 ^[6]	T. Denny et al.
RSA-129 [**]	129	426	\$100 USD	April 26, 1994 ^[5]	Arjen K. Lenstra et al.
RSA-130	130	430	LIS\$14 597 ^[4]	April 10, 1996	Arien K. Lenstra et al.
RSA-140	¹⁴ Oria	inal r	ecomm	ended F	RSA key size
RSA-150	15.		coomin	Chacal	
RSA-155	155	512	\$9,383 ^[4]	August 22, 1999	Herman te Riele et al.
DCA 160	160	530		April 1, 2003	Jens Franke et al., University of Bonn
RSA-160					
RSA-170 ^[1] RSA-576	170	563		December 29, 2009	D. Bonenberger and M. Krone [***]
RSA-170 ^[1] RSA-576 RSA-180 ^[1] RSA-190 ^[1] RSA-640 RSA-200 ^[1]	170 We wa	ant our d	pref	emes to be erably forev	secure in >40 years-
RSA-170 ^[1] RSA-576 RSA-180 ^[1] RSA-190 ^[1] RSA-640 RSA-200 ^[1] ¹ RSA-210 ^[1]	170 We wa	ant our d	prefe al paramet	emes to be erably forev ers were bro	secure in >40 years— er. oken after ~25 years.)
RSA-170 ^[1] RSA-576 RSA-180 ^[1] RSA-190 ^[1] RSA-640 RSA-640 RSA-200 ^[1] RSA-210 ^[1] RSA-210 ^[1]	170 We wa	ant our o 's origin	pref	emes to be erably forev ers were bro	secure in >40 years— er. oken after ~25 years.)
RSA-170 ^[1] RSA-576 RSA-180 ^[1] RSA-190 ^[1] RSA-640 RSA-200 ^[1] ¹ RSA-210 ^[1]	170 We wa (RSA) 212 220	ant our d 's origin	prefe al paramet	emes to be erably forev ers were bro	secure in >40 years— er. oken after ~25 years.)
RSA-170 ^[1] RSA-576 RSA-180 ^[1] RSA-190 ^[1] RSA-640 RSA-200 ^[1] RSA-210 ^[1] RSA-210 ^[1] RSA-210 ^[1]	170 We wa (RSA	ant our o 's origin 704 729	prefe al paramet	emes to be erably forev ers were bro	secure in >40 years— er. oken after ~25 years.)

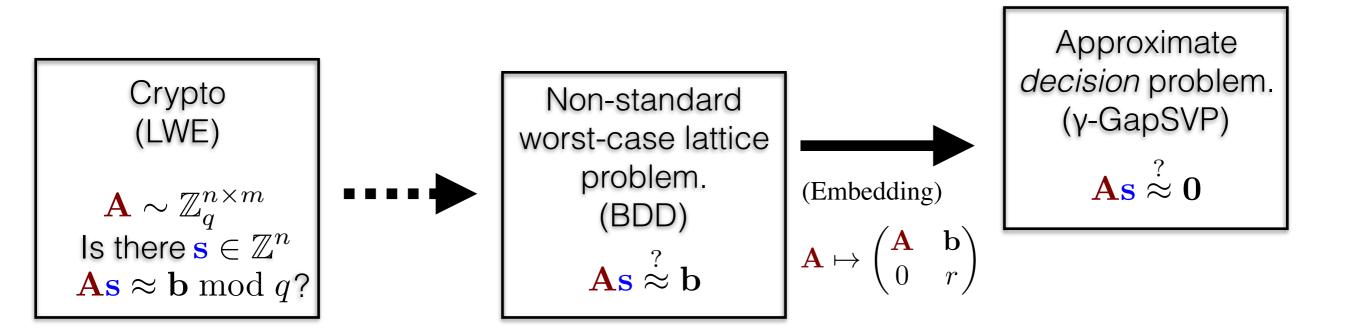
Noah Stephens-Davidowitz

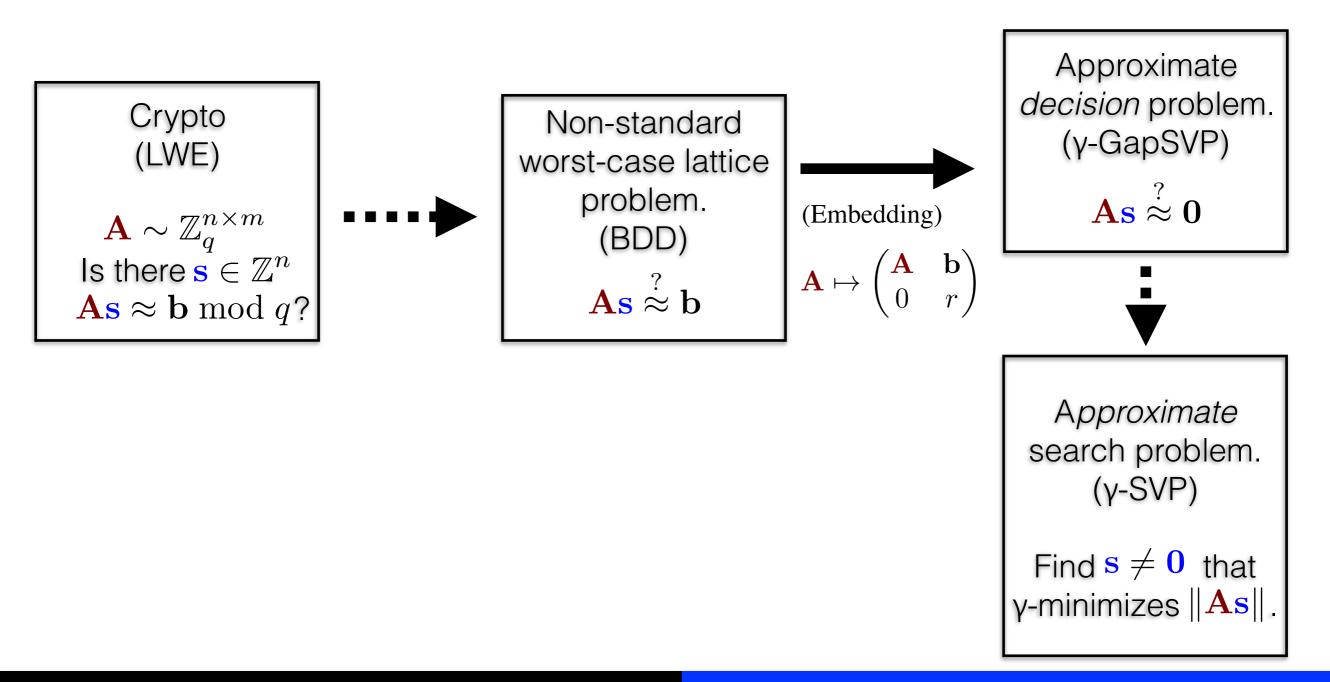
Noah Stephens-Davidowitz



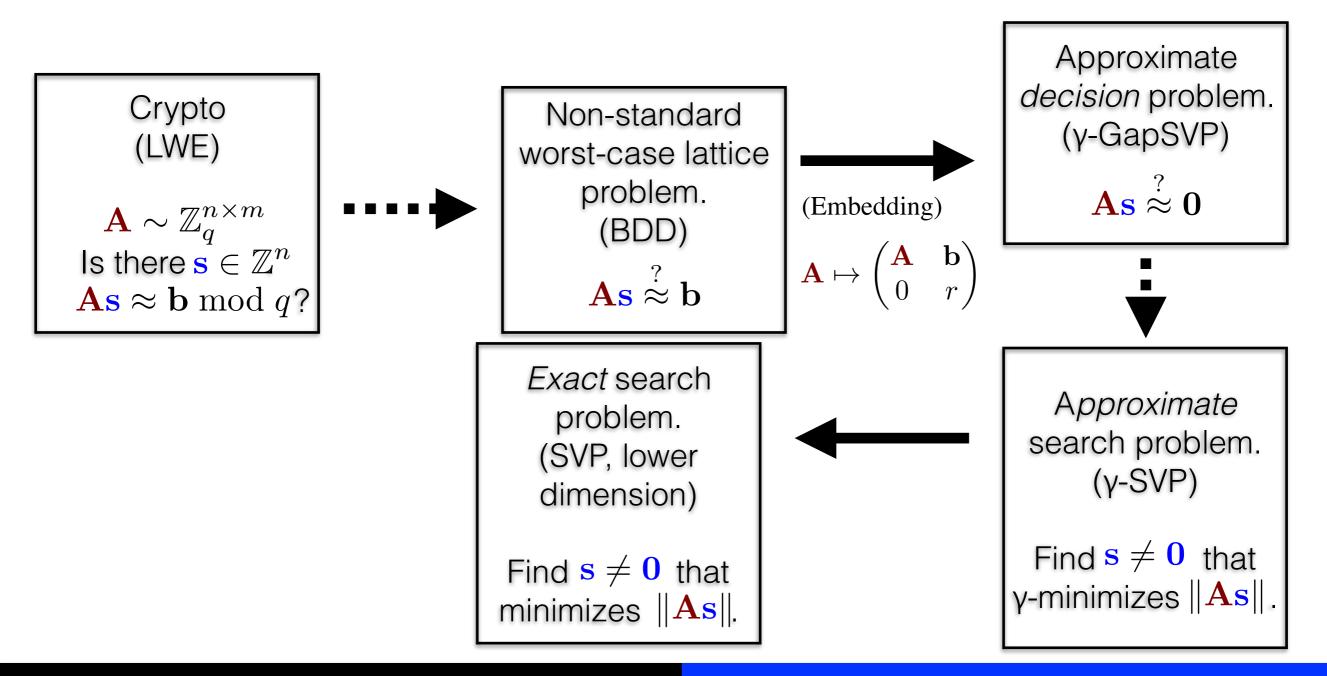




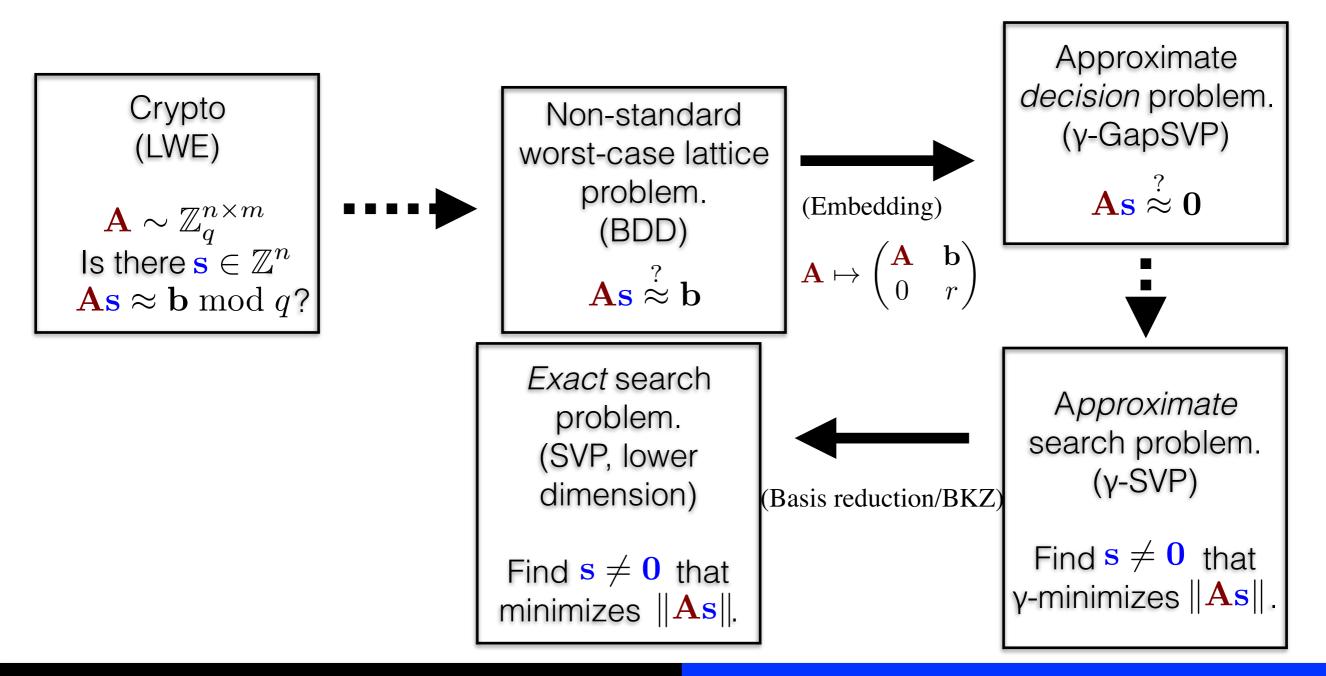




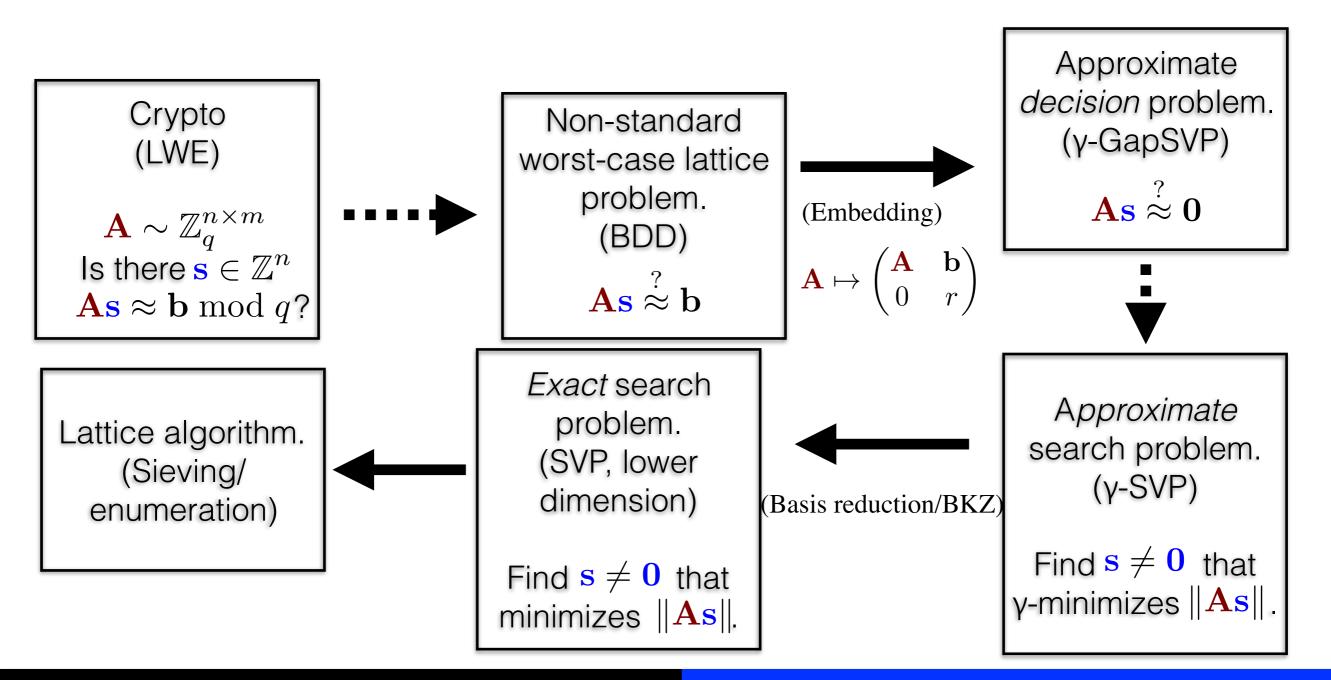
Noah Stephens-Davidowitz



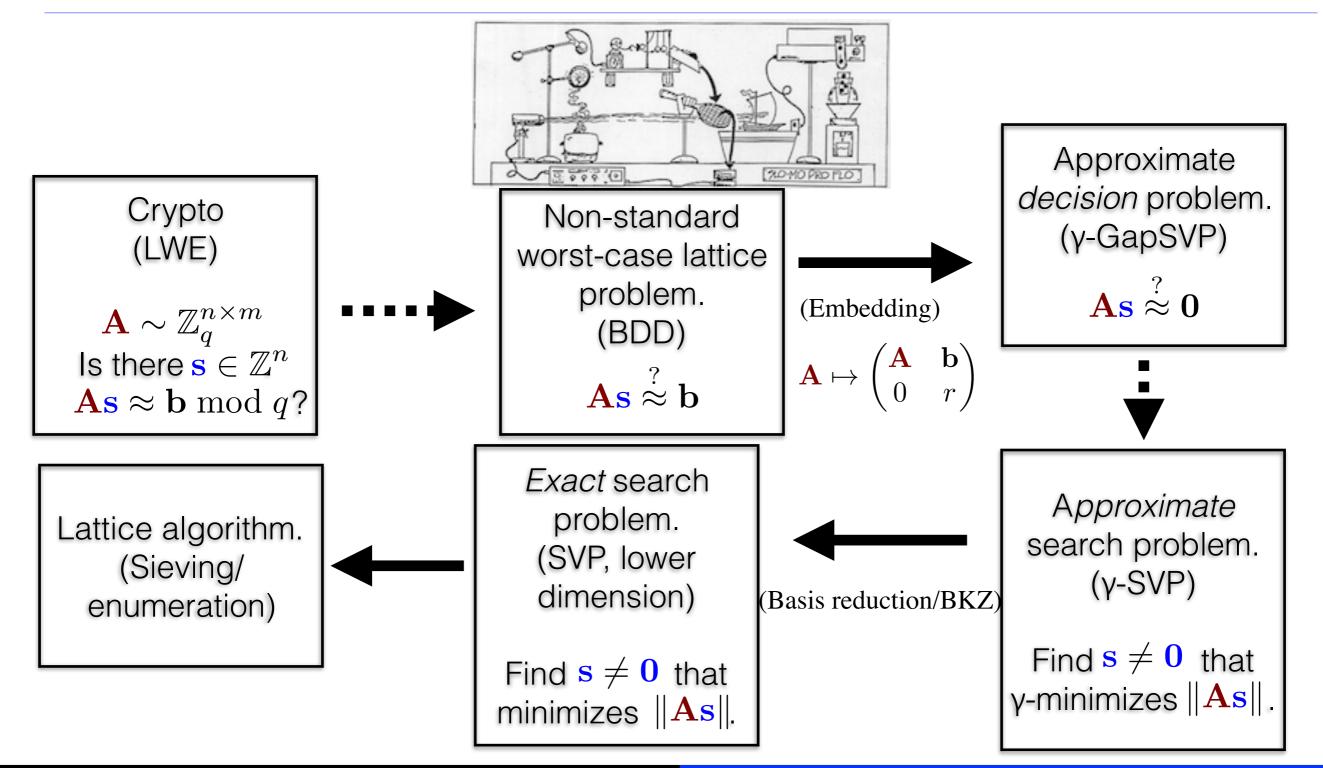
Noah Stephens-Davidowitz



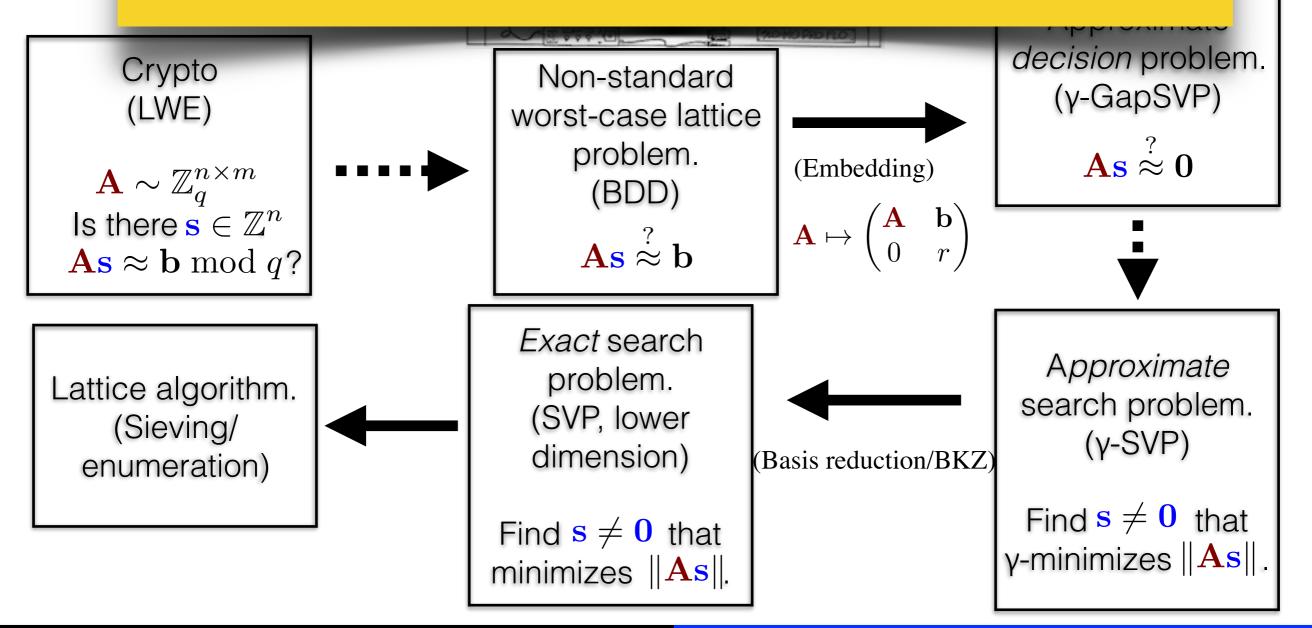
Noah Stephens-Davidowitz



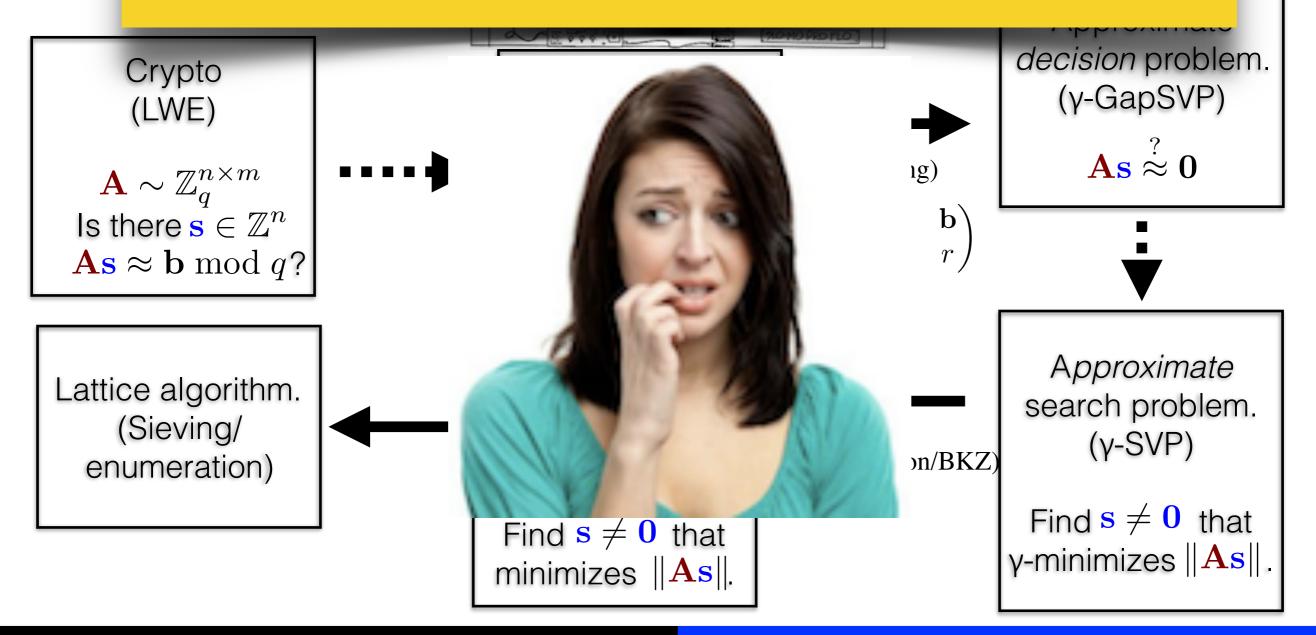
Noah Stephens-Davidowitz



To determine how secure your crypto scheme is, simply assume that our current best method for each of these steps is nearly optimal.

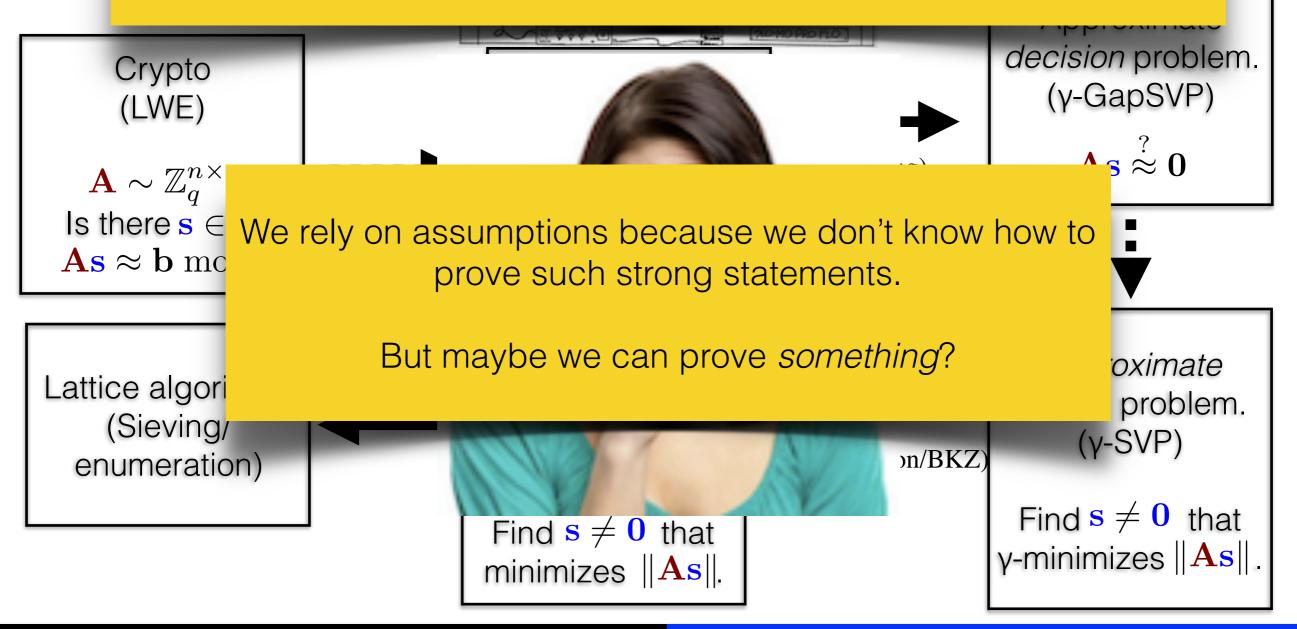


To determine how secure your crypto scheme is, simply assume that our current best method for each of these steps is nearly optimal.

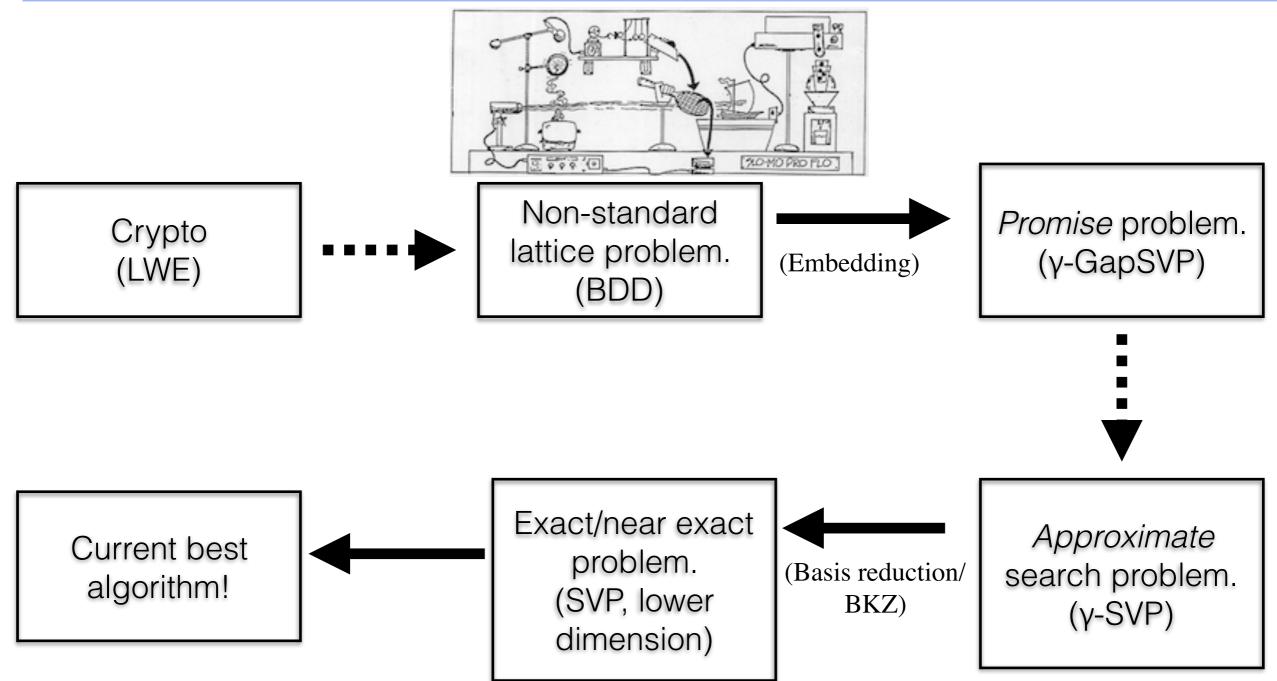


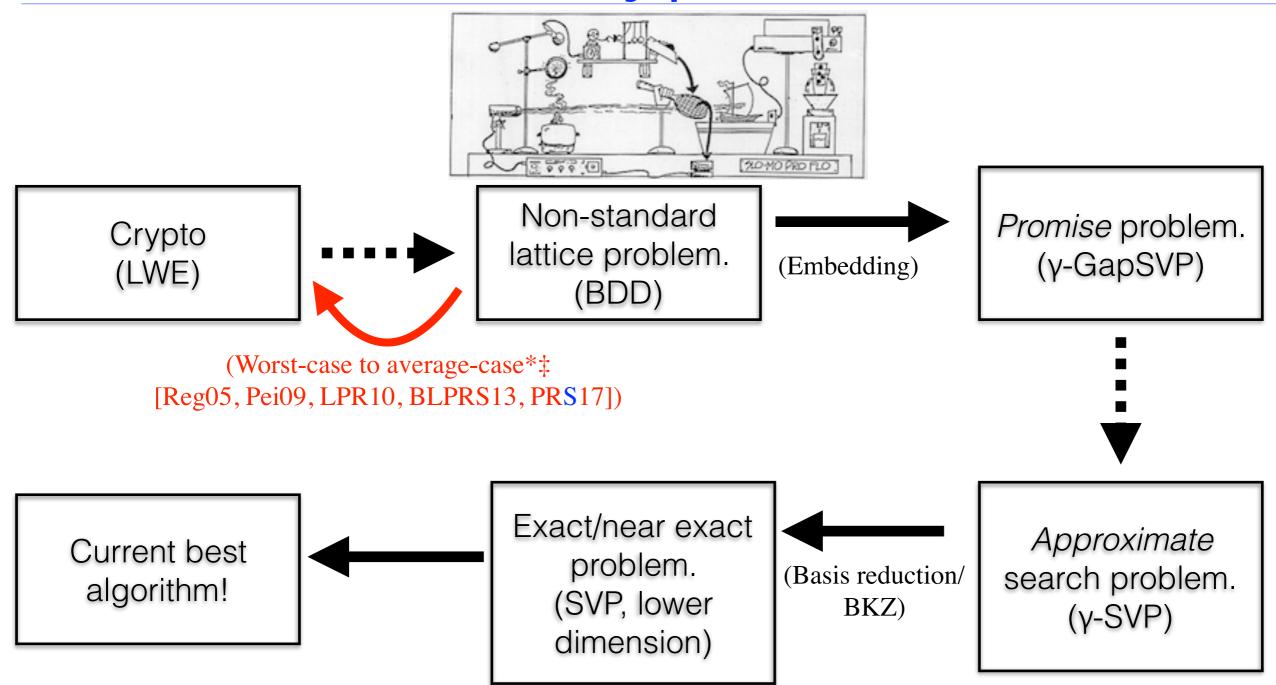
Noah Stephens-Davidowitz

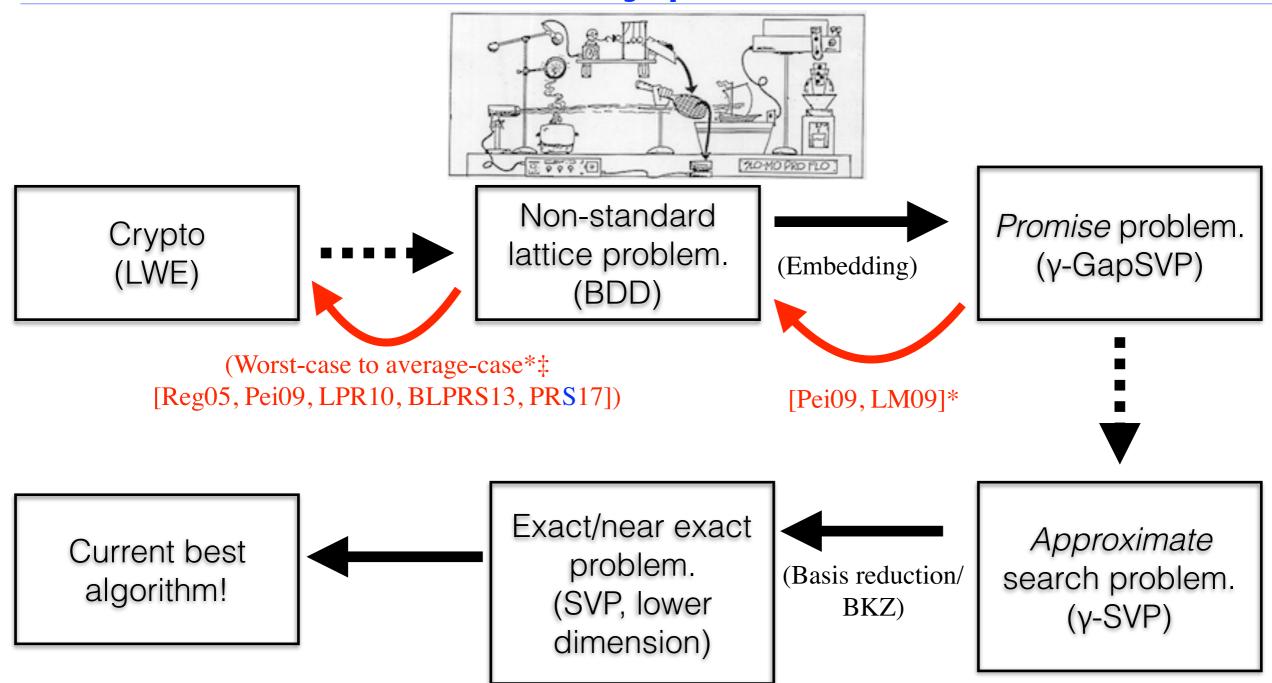
To determine how secure your crypto scheme is, simply assume that our current best method for each of these steps is nearly optimal.

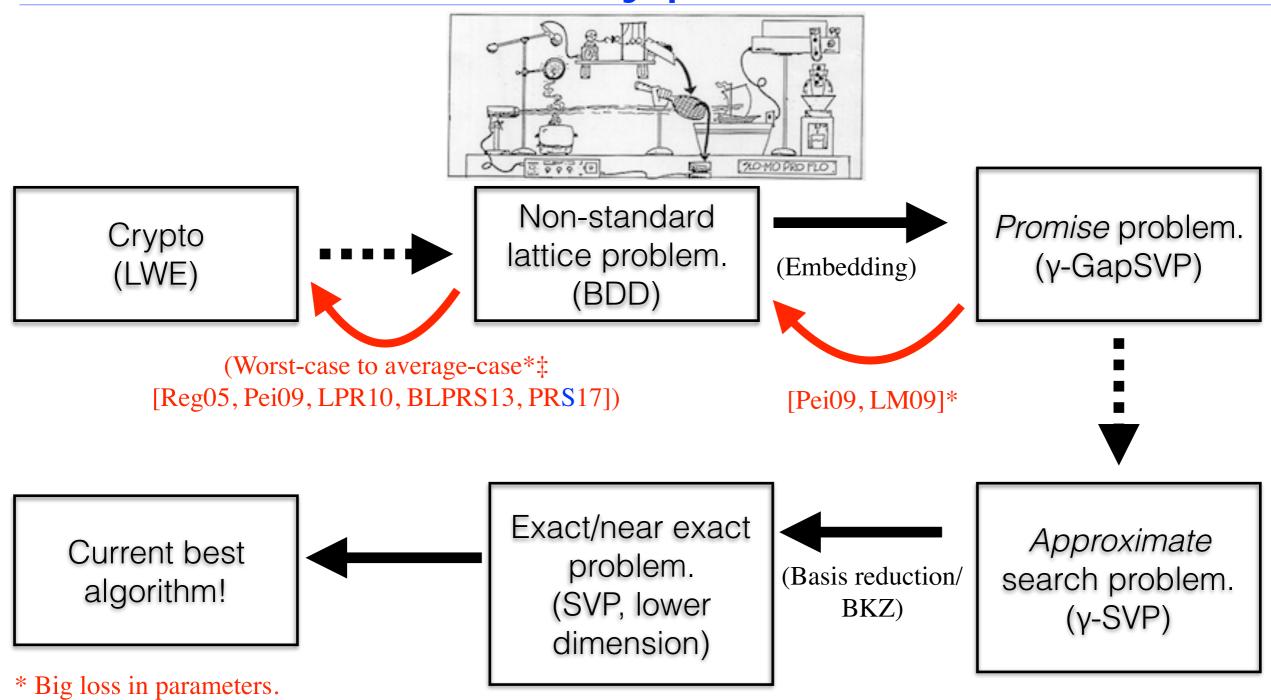


Noah Stephens-Davidowitz

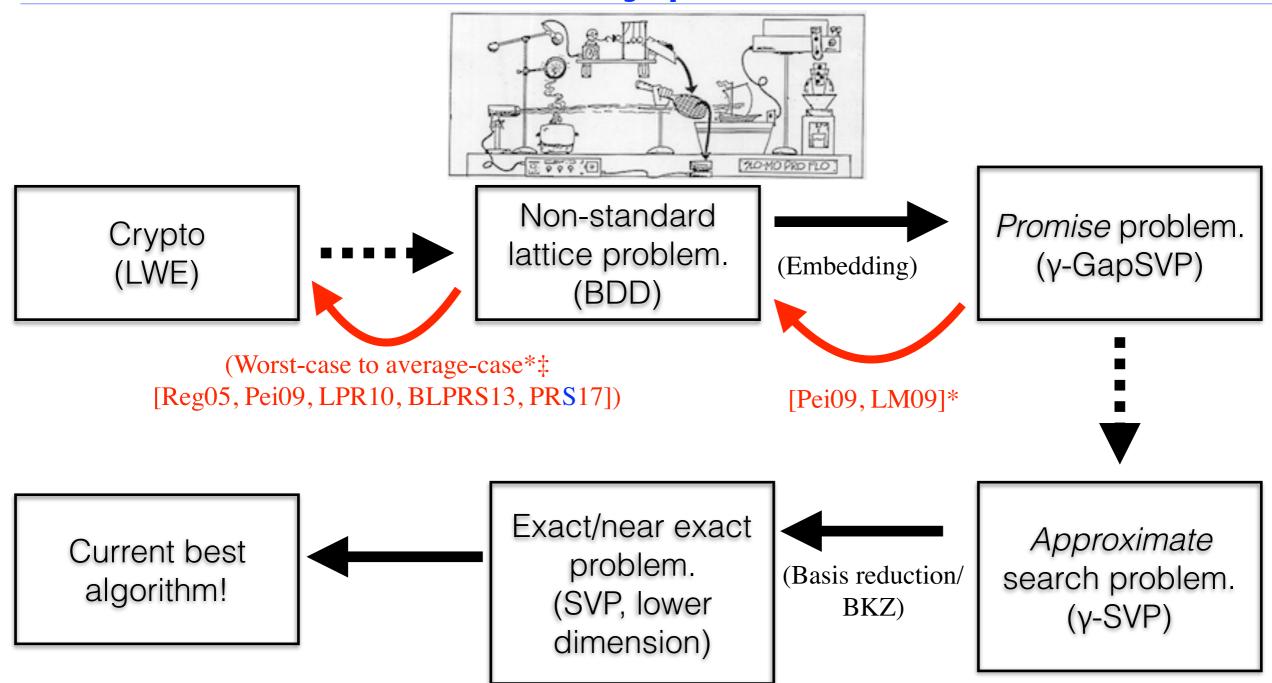




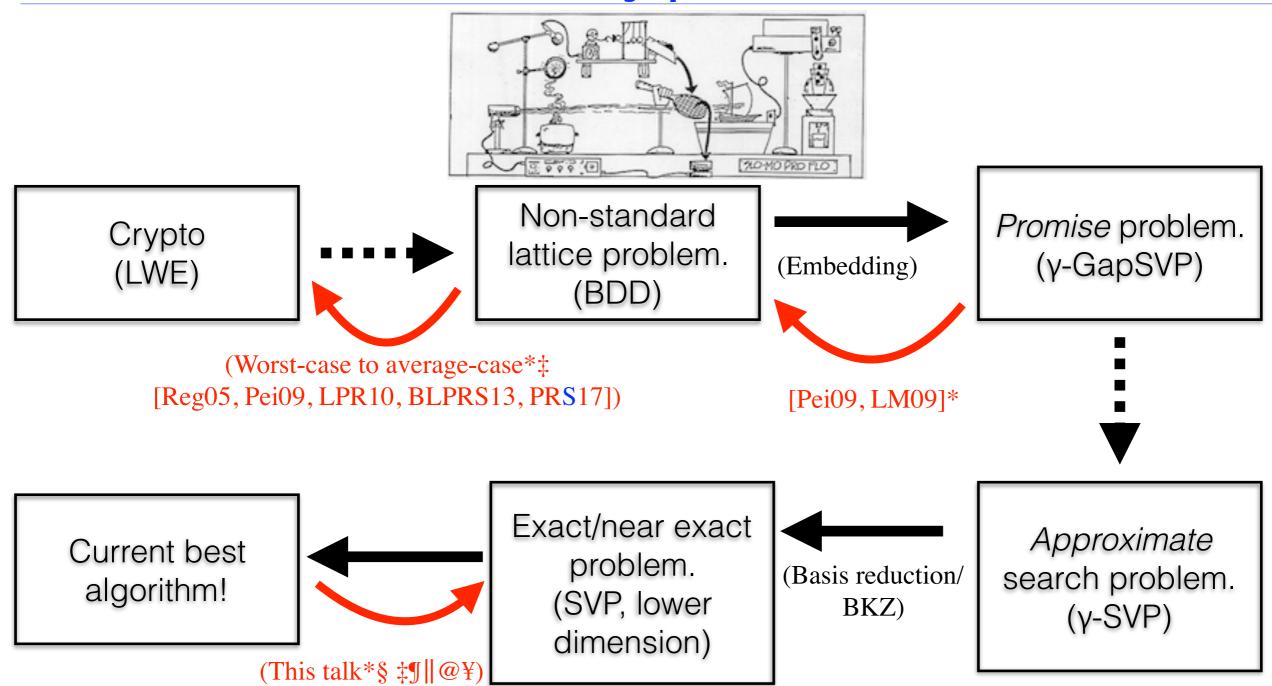




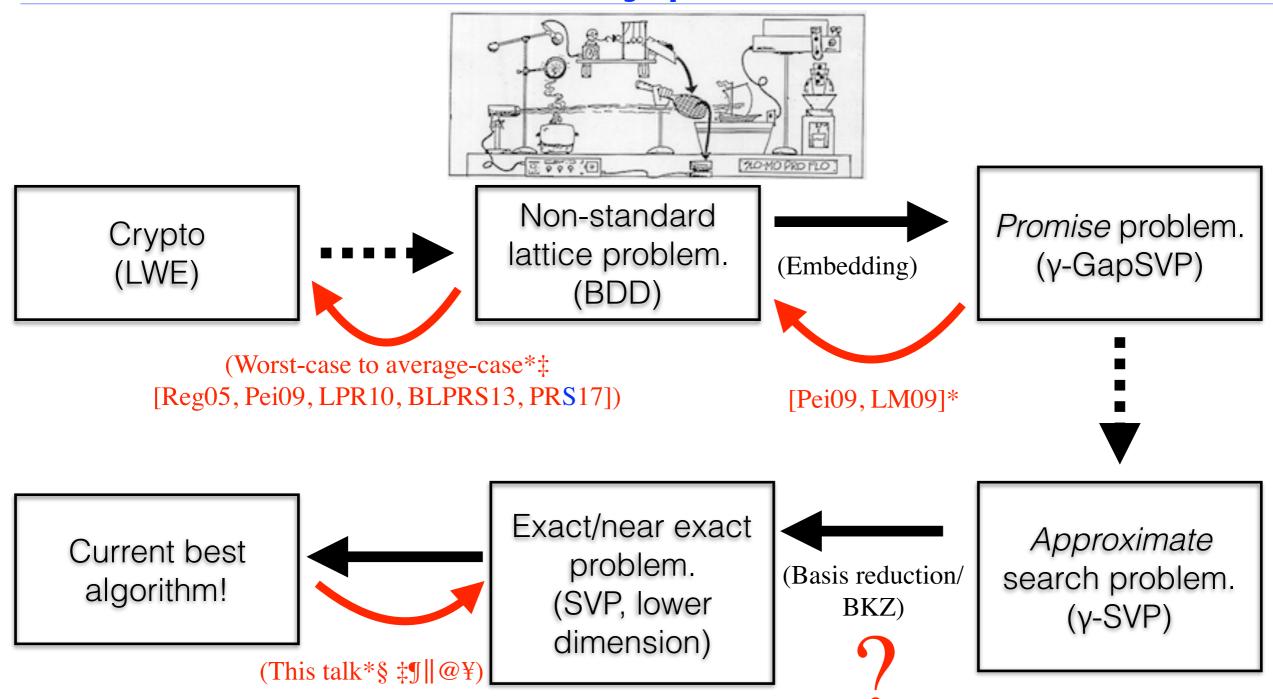
‡ Doesn't apply for many practical schemes.



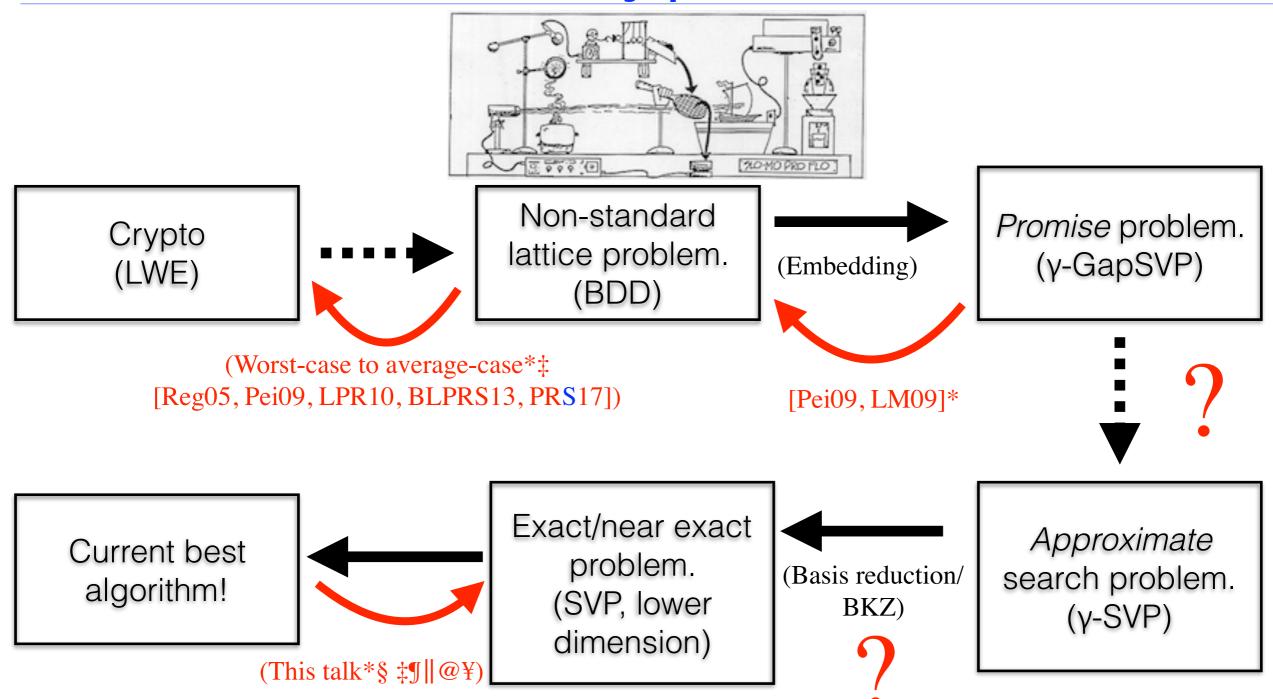
Security of Lattice-Based Crypto

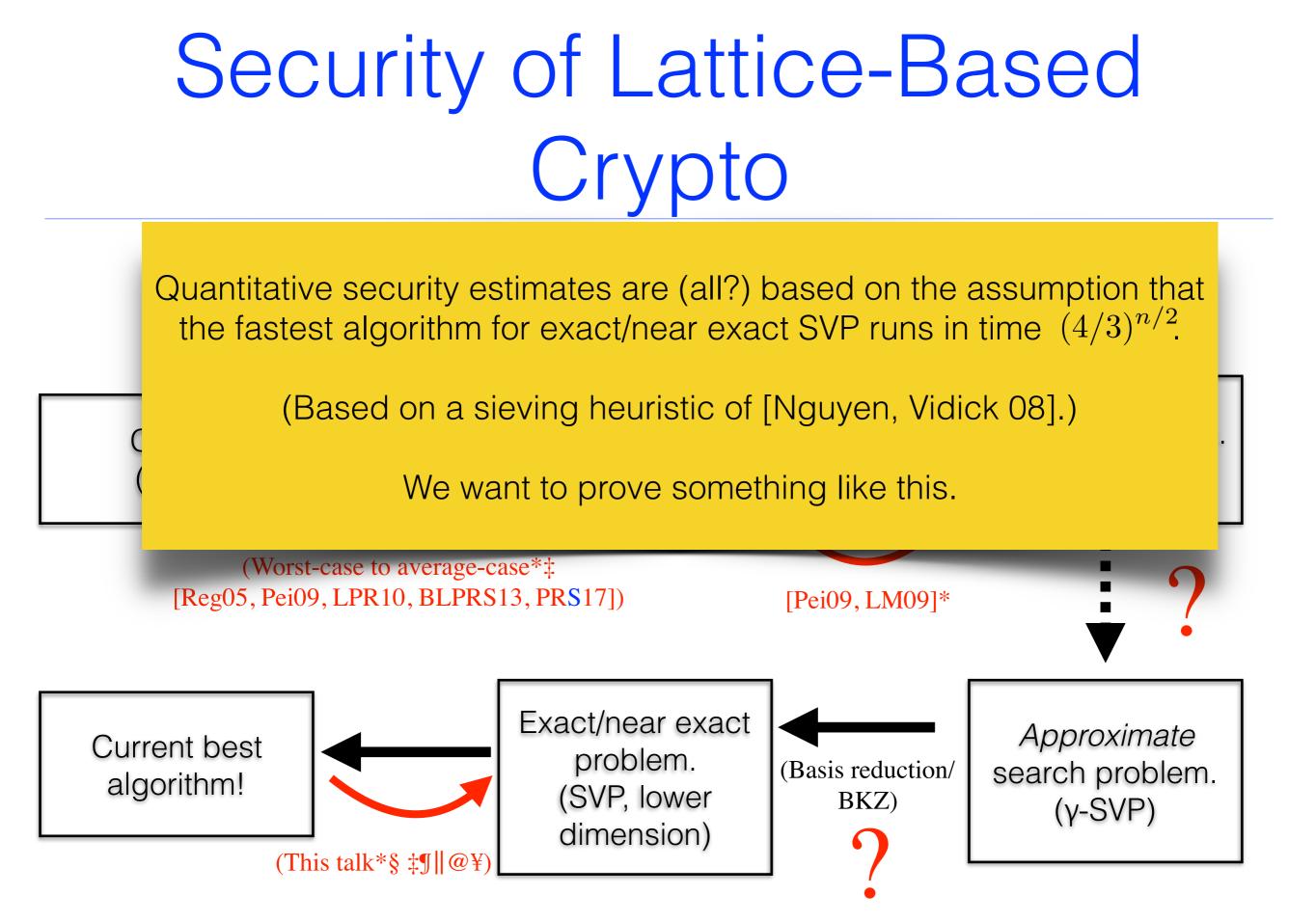


Security of Lattice-Based Crypto



Security of Lattice-Based Crypto





Noah Stephens-Davidowitz

Noah Stephens-Davidowitz

• Lower bound of $2^{n+o(n)}$ time for CVP in "almost all" ℓ_p norms, not including p=2.

- Lower bound of $2^{n+o(n)}$ time for CVP in "almost all" ℓ_p norms, not including p=2.
 - $2^{\Omega(n)}$ for all p, even for approximate CVP.

- Lower bound of $2^{n+o(n)}$ time for **CVP** in "almost all" ℓ_p norms, **not including** p = 2.
 - $2^{\Omega(n)}$ for all p, even for approximate CVP.
 - Compare with the $2^{n-o(n)}$ -time algorithm for p=2.

- Lower bound of $2^{n+o(n)}$ time for **CVP** in "almost all" ℓ_p norms, **not including** p=2.
 - $2^{\Omega(n)}$ for all p, even for approximate CVP.
 - Compare with the $2^{n-o(n)}$ -time algorithm for p=2.
- Lower bound of $2^{C_p n}$ time for SVP in "almost all" ℓ_p norms with $p \gtrsim 2.14$.

- Lower bound of $2^{n+o(n)}$ time for **CVP** in "almost all" ℓ_p norms, **not including** p = 2.
 - $2^{\Omega(n)}$ for all p, even for approximate CVP.
 - Compare with the $2^{n-o(n)}$ -time algorithm for p=2.
- Lower bound of $2^{C_p n}$ time for SVP in "almost all" ℓ_p norms with $p \gtrsim 2.14$.

Noah Stephens-Davidowitz

- Lower bound of $2^{n+o(n)}$ time for **CVP** in "almost all" ℓ_p norms, **not including** p=2.
 - $2^{\Omega(n)}$ for all p, even for approximate CVP.
 - Compare with the $2^{n-o(n)}$ -time algorithm for p=2.
- Lower bound of $2^{C_p n}$ time for SVP in "almost all" ℓ_p norms with $p \gtrsim 2.14$.

- Lower bound of $2^{n+o(n)}$ time for **CVP** in "almost all" ℓ_p norms, **not including** p = 2.
 - $2^{\Omega(n)}$ for all p, even for approximate CVP.
 - Compare with the $2^{n-o(n)}$ -time algorithm for p=2.
- Lower bound of $2^{C_p n}$ time for SVP in "almost all" ℓ_p norms with $p \gtrsim 2.14$.
- Lower bound of $2^{\Omega(n)}$ for SVP for all p.

- Lower bound of $2^{n+o(n)}$ time for **CVP** in "almost all" ℓ_p norms, **not including** p = 2.
 - $2^{\Omega(n)}$ for all p, even for approximate CVP.
 - Compare with the $2^{n-o(n)}$ -time algorithm for p=2.
- Lower bound of $2^{C_p n}$ time for SVP in "almost all" ℓ_p norms with $p \gtrsim 2.14$.
- Lower bound of $2^{\Omega(n)}$ for SVP for all p.
 - (This result is meant to surprise you later...)

- Lower bound of $2^{n+o(n)}$ time for **CVP** in "almost all" ℓ_p norms, **not including** p = 2.
 - $2^{\Omega(n)}$ for all p, even for approximate CVP.
 - Compare with the $2^{n-o(n)}$ -time algorithm for p=2.
- Lower bound of $2^{C_p n}$ time for SVP in "almost all" ℓ_p norms with $p \gtrsim 2.14$.
- Lower bound of $2^{\Omega(n)}$ for SVP for all p.
 - (This result is meant to surprise you later...)
 - Compare with the $(4/3)^{n/2}$ heuristic lower bound.

Act 2: Fine-Grained Hardness of CVP

Huck Bennett

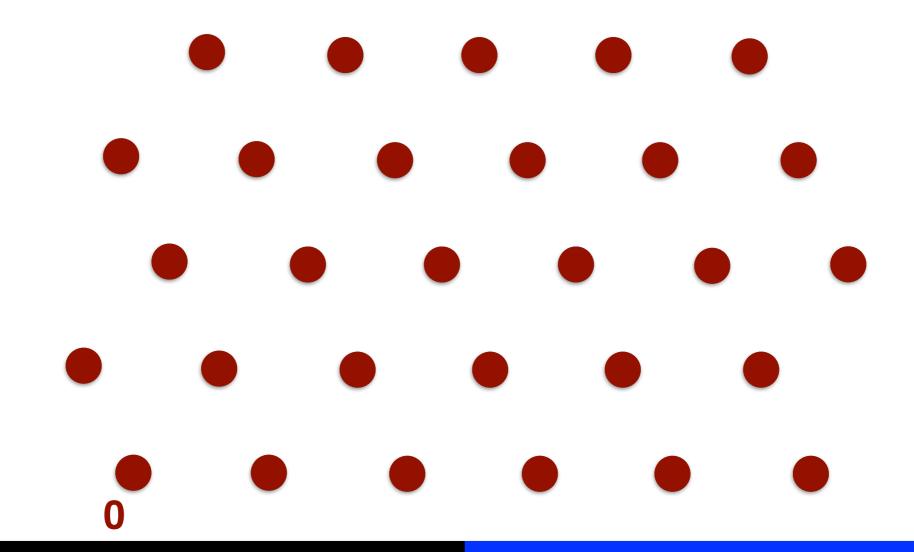
Alexander Golovnev

Noah Stephens-Davidowitz

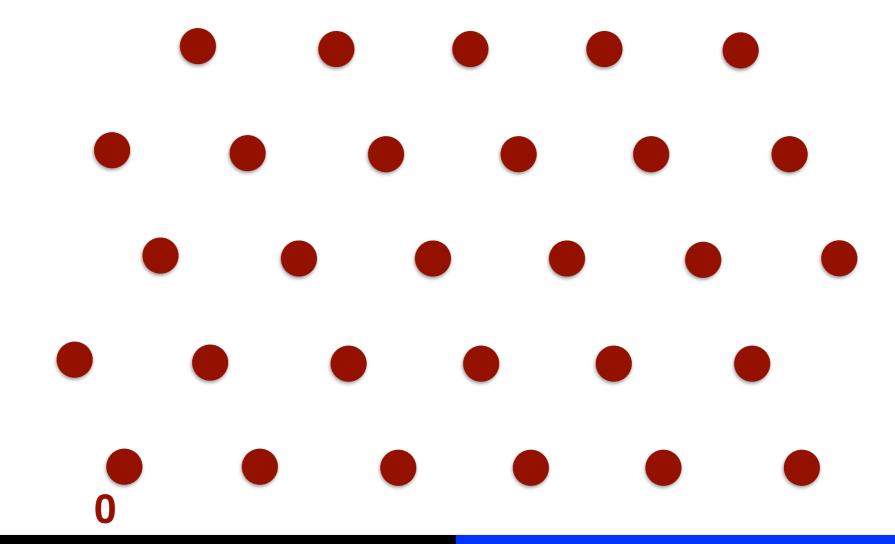
Noah Stephens-Davidowitz

• \mathcal{L} is a discrete set of vectors in \mathbb{R}^d .

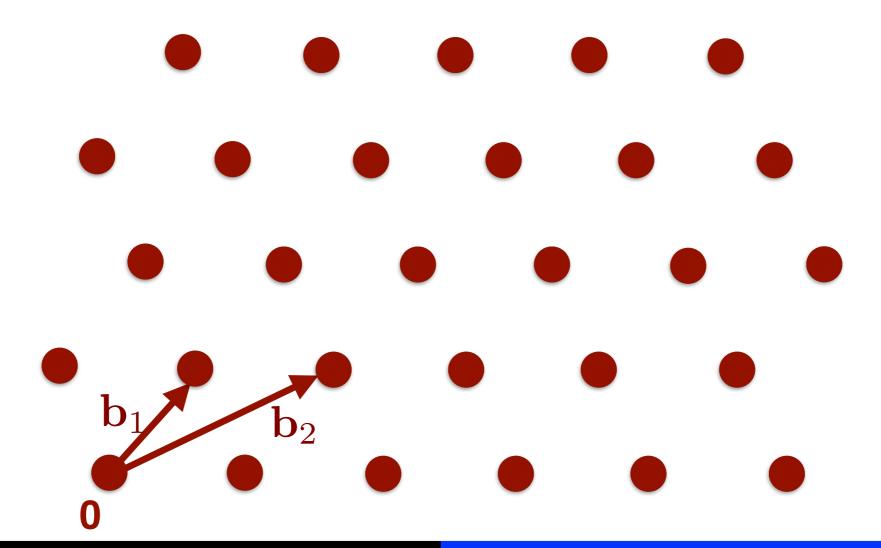
• \mathcal{L} is a discrete set of vectors in \mathbb{R}^d .



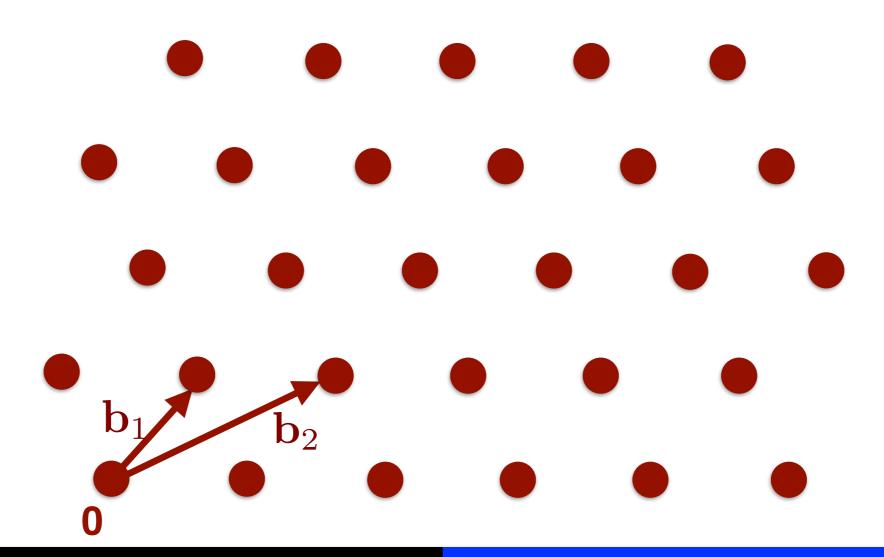
- \mathcal{L} is a discrete set of vectors in \mathbb{R}^d .
- Specified by a basis $\mathbf{b}_1, \ldots, \mathbf{b}_n$, linearly independent vectors



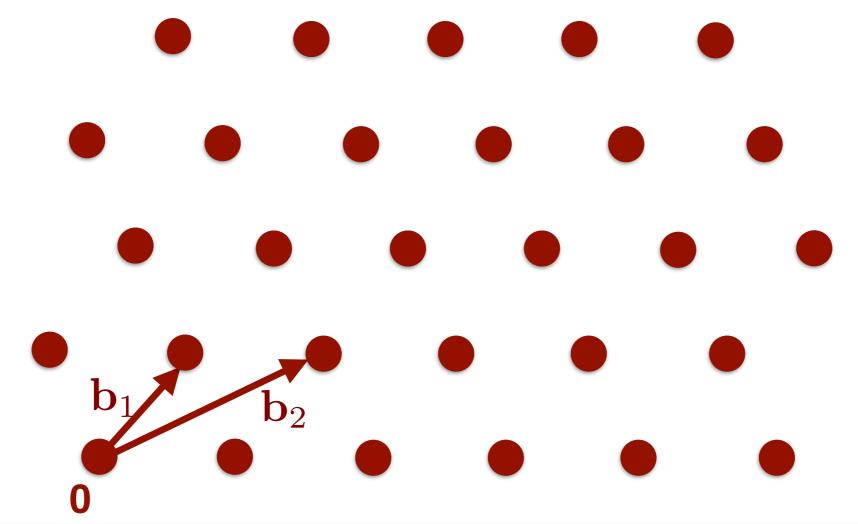
- \mathcal{L} is a discrete set of vectors in \mathbb{R}^d .
- Specified by a basis $\mathbf{b}_1, \ldots, \mathbf{b}_n$, linearly independent vectors

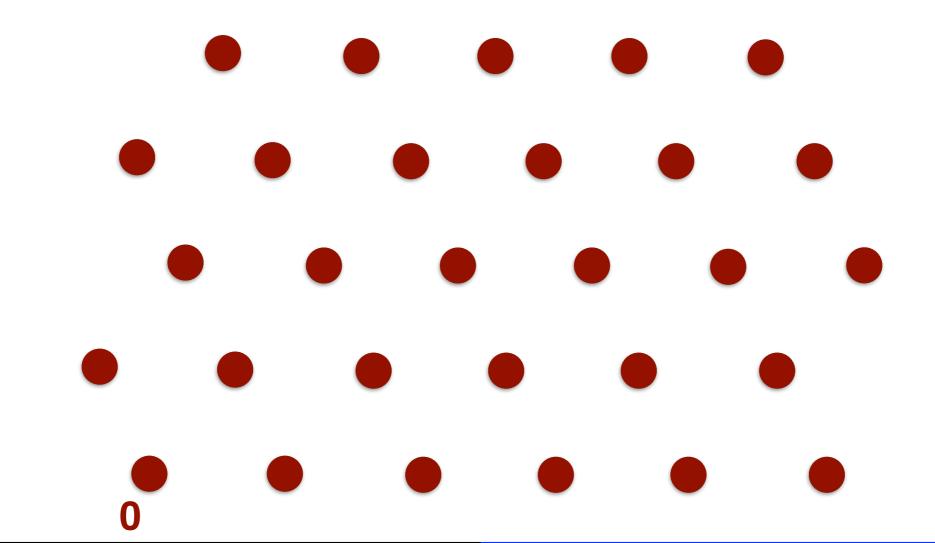


- \mathcal{L} is a discrete set of vectors in \mathbb{R}^d .
- Specified by a basis $\mathbf{b}_1, \ldots, \mathbf{b}_n$, linearly independent vectors
- $\mathcal{L} = \{a_1\mathbf{b}_1 + \cdots + a_n\mathbf{b}_n \mid a_i \in \mathbb{Z}\}$

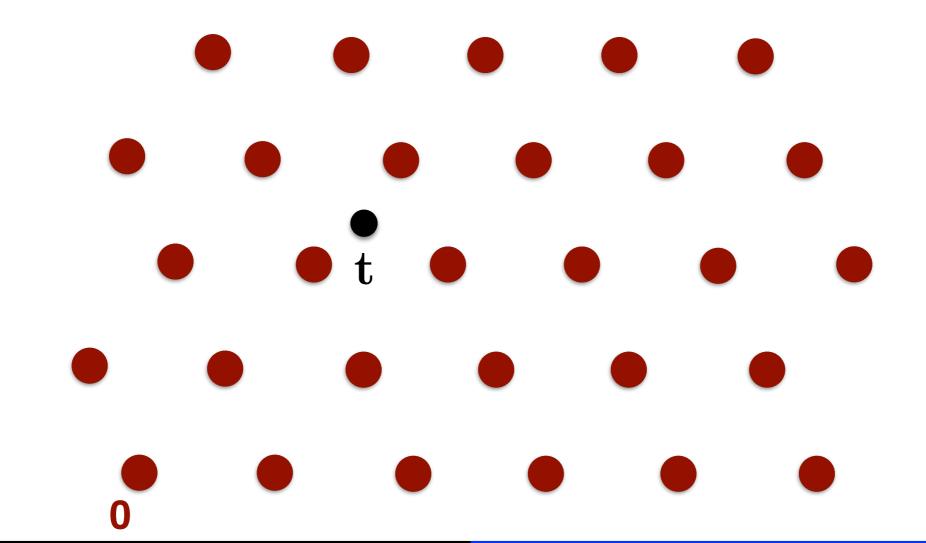


- \mathcal{L} is a discrete set of vectors in \mathbb{R}^d .
- Specified by a basis $\mathbf{b}_1, \ldots, \mathbf{b}_n$, linearly independent vectors
- $\mathcal{L} = \{a_1\mathbf{b}_1 + \cdots + a_n\mathbf{b}_n \mid a_i \in \mathbb{Z}\}$
- n is the rank of the lattice, and d is the *ambient dimension*.

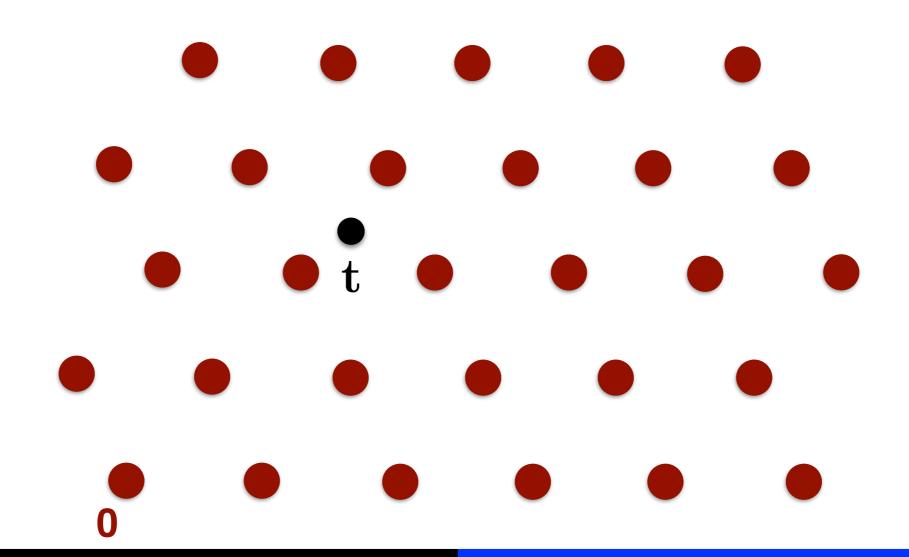




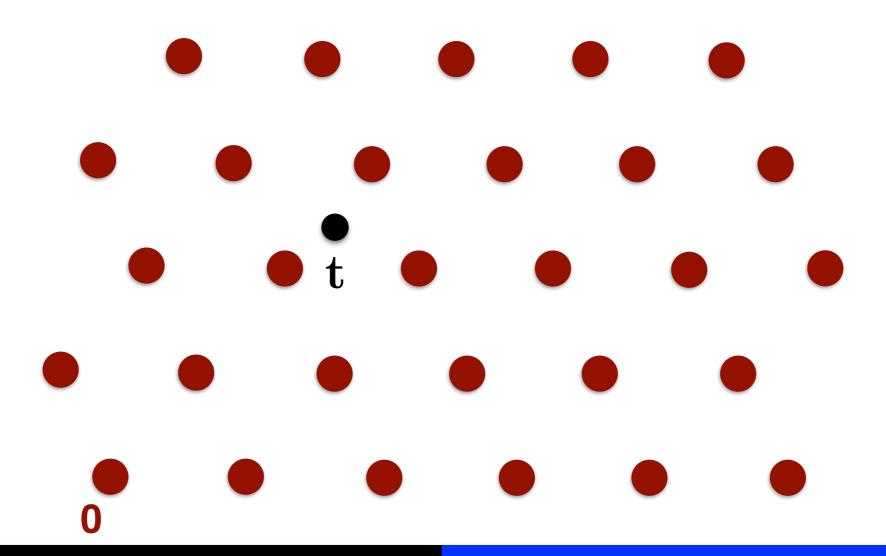
Noah Stephens-Davidowitz



$$\operatorname{dist}_p(\mathbf{t}, \mathcal{L}) := \min_{\mathbf{y} \in \mathcal{L}} \|\mathbf{y} - \mathbf{t}\|_p$$

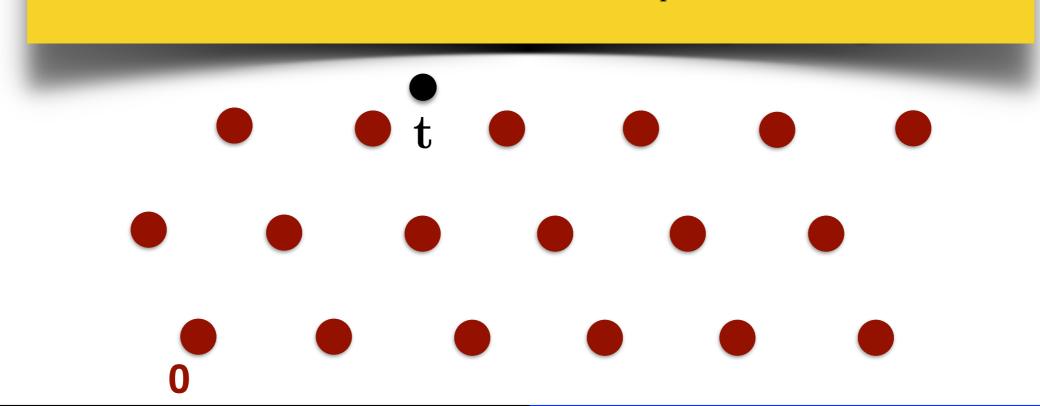


$$\operatorname{dist}_{p}(\mathbf{t}, \mathcal{L}) := \min_{\mathbf{y} \in \mathcal{L}} \|\mathbf{y} - \mathbf{t}\|_{p}$$
$$\|\mathbf{x}\|_{p} := (|x_{1}|^{p} + \dots + |x_{d}|^{p})^{1/p}$$



$$\operatorname{dist}_{p}(\mathbf{t}, \mathcal{L}) := \min_{\mathbf{y} \in \mathcal{L}} \|\mathbf{y} - \mathbf{t}\|_{p}$$
$$\|\mathbf{x}\|_{p} := (|x_{1}|^{p} + \dots + |x_{d}|^{p})^{1/p}$$

 CVP_p is the computational problem that asks us to compute $\operatorname{dist}_p(\mathbf{t}, \mathcal{L})$.



$$dist_p(\mathbf{t}, \mathcal{L}) := \min_{\mathbf{y} \in \mathcal{L}} \|\mathbf{y} - \mathbf{t}\|_p$$
$$\|\mathbf{x}\|_p := (|x_1|^p + \dots + |x_d|^p)^{1/p}$$

 CVP_p is the computational problem that asks us to compute $\operatorname{dist}_p(\mathbf{t}, \mathcal{L})$.

Approximate CVP_p asks us to approximate $\text{dist}_p(\mathbf{t}, \mathcal{L})$. (We'll mostly talk about the *exact* problem...)

Noah Stephens-Davidowitz

Noah Stephens-Davidowitz

Noah Stephens-Davidowitz

• CVP_2 can be solved in time $2^{n+o(n)}$ [MV10, ADS15].

- CVP_2 can be solved in time $2^{n+o(n)}$ [MV10, ADS15].
- CVP_p can be solved in time $n^{O(n)}$ and approximated in time $2^{O(n)}$ for all $1 \le p \le \infty$ [AKS02, BN09, Dadush 12].

- CVP_2 can be solved in time $2^{n+o(n)}$ [MV10, ADS15].
- CVP_p can be solved in time $n^{O(n)}$ and approximated in time $2^{O(n)}$ for all $1 \le p \le \infty$ [AKS02, BN09, Dadush 12].
- CVP_p is NP-hard for all $1 \le p \le \infty$ [van Emde Boaz '81].

- CVP_2 can be solved in time $2^{n+o(n)}$ [MV10, ADS15].
- CVP_p can be solved in time $n^{O(n)}$ and approximated in time $2^{O(n)}$ for all $1 \le p \le \infty$ [AKS02, BN09, Dadush 12].
- CVP_p is NP-hard for all $1 \le p \le \infty$ [van Emde Boaz '81].
- Even hard to approximate up to $n^{c/\log \log n}$ [ABSS93, DKRS03].

- CVP_2 can be solved in time $2^{n+o(n)}$ [MV10, ADS15].
- CVP_p can be solved in time $n^{O(n)}$ and approximated in time $2^{O(n)}$ for all $1 \le p \le \infty$ [AKS02, BN09, Dadush 12].
- CVP_p is NP-hard for all $1 \le p \le \infty$ [van Emde Boaz '81].
- Even hard to approximate up to $n^{c/\log \log n}$ [ABSS93, DKRS03].
- "The hardest lattice problem."

- CVP_2 can be solved in time $2^{n+o(n)}$ [MV10, ADS15].
- CVP_p can be solved in time $n^{O(n)}$ and approximated in time $2^{O(n)}$ for all $1 \le p \le \infty$ [AKS02, BN09, Dadush 12].
- CVP_p is NP-hard for all $1 \le p \le \infty$ [van Emde Boaz '81].
- Even hard to approximate up to $n^{c/\log \log n}$ [ABSS93, DKRS03].
- "The hardest lattice problem."
 - (In practice seems much harder than SVP)

The Closest Vector Problem

- CVP_2 can be solved in time $2^{n+o(n)}$ [MV10, ADS15].
- CVP_p can be solved in time $n^{O(n)}$ and approximated in time $2^{O(n)}$ for all $1 \le p \le \infty$ [AKS02, BN09, Dadush 12].
- CVP_p is NP-hard for all $1 \le p \le \infty$ [van Emde Boaz '81].
- Even hard to approximate up to $n^{c/\log \log n}$ [ABSS93, DKRS03].
- "The hardest lattice problem."
 - (In practice seems much harder than SVP)
 - Hardness proofs for lattice problems (like SVP) typically go through CVP.

The Closest Vector Problem

- CVP_2 can be solved in time $2^{n+o(n)}$ [MV10, ADS15].
- CVP_p can be solved in time $n^{O(n)}$ and approximated in time $2^{O(n)}$ for all $1 \le p \le \infty$ [AKS02, BN09, Dadush 12].
- CVP_p is NP-hard for all $1 \le p \le \infty$ [van Emde Boaz '81].
- Even hard to approximate up to $n^{c/\log \log n}$ [ABSS93, DKRS03].
- "The hardest lattice problem."
 - (In practice seems much harder than SVP)
 - Hardness proofs for lattice problems (like SVP) typically go through CVP.

Real-world cryptographic applications require quantitative/finegrained hardness.

Maybe there's a $2^{\sqrt{n}}$ -time algorithm for CVP? Even a $2^{n/20}$ -time would break crypto in practice.

We'll show something close to 2^n -time hardness of CVP.

Noah Stephens-Davidowitz

The Closest Vector Problem

- CVP_2 can be solved in time $2^{n+o(n)}$ [MV10, ADS15].
- CVF
 [AK]
 CVI Before this work, only fine-grained hardness result known was a
 - $2^{\Omega(n)}$ -time lower bound [folklore, Yeom15].

- Even
 "The
 - (In practice seems much harder than SVP)
 - Hardness proofs for lattice problems (like SVP) typically go through CVP.

Real-world cryptographic applications require quantitative/finegrained hardness.

Maybe there's a $2^{\sqrt{n}}$ -time algorithm for CVP? Even a $2^{n/20}$ -time would break crypto in practice.

We'll show something close to 2^n -time hardness of CVP.

Noah Stephens-Davidowitz

Noah Stephens-Davidowitz

k-SAT:

Noah Stephens-Davidowitz

k-SAT:

 $(x_1 \vee \overline{x}_7 \vee \cdots \vee \overline{x}_{72}) \wedge (\overline{x}_{103} \vee \overline{x}_2 \vee \cdots \vee x_{42}) \wedge \cdots \wedge (\overline{x}_5 \vee x_{17} \vee \cdots \vee x_{112})$

k-SAT:

 $(x_1 \lor \overline{x}_7 \lor \cdots \lor \overline{x}_{72}) \land (\overline{x}_{103} \lor \overline{x}_2 \lor \cdots \lor x_{42}) \land \cdots \land (\overline{x}_5 \lor x_{17} \lor \cdots \lor x_{112})$

k literals per clause

k-SAT:

 $(x_1 \lor \overline{x}_7 \lor \cdots \lor \overline{x}_{72}) \land (\overline{x}_{103} \lor \overline{x}_2 \lor \cdots \lor x_{42}) \land \cdots \land (\overline{x}_5 \lor x_{17} \lor \cdots \lor x_{112})$

k literals per clause n variables, m clauses

k-SAT:

 $(x_1 \lor \overline{x}_7 \lor \cdots \lor \overline{x}_{72}) \land (\overline{x}_{103} \lor \overline{x}_2 \lor \cdots \lor x_{42}) \land \cdots \land (\overline{x}_5 \lor x_{17} \lor \cdots \lor x_{112})$ k literals per clause n variables, m clauses

Conjecture (SETH, IP99). There exists a constant integer k such that no algorithm can solve k-SAT in $2^{0.99n}$ time.

k-SAT:

 $(x_{1} \lor \overline{x}_{7} \lor \cdots \lor \overline{x}_{72}) \land (\overline{x}_{103} \lor \overline{x}_{2} \lor \cdots \lor x_{42}) \land \cdots \land (\overline{x}_{5} \lor x_{17} \lor \cdots \lor x_{112})$ k literals per clause

n variables, m clauses

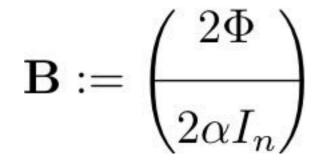
Conjecture (SETH, IP99). There exists a constant integer k such that no algorithm can solve k-SAT in $2^{0.99n}$ time.

We want to show a reduction from k-SAT on n variables to CVP on a lattice of rank n.

Noah Stephens-Davidowitz

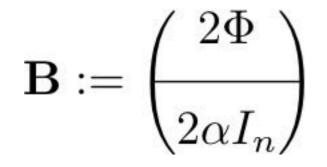
 $(x_1 \lor x_2) \land (\overline{x}_1 \lor x_3) \land (\overline{x}_2 \lor \overline{x}_3)$

 $(x_1 \lor x_2) \land (\overline{x}_1 \lor x_3) \land (\overline{x}_2 \lor \overline{x}_3)$



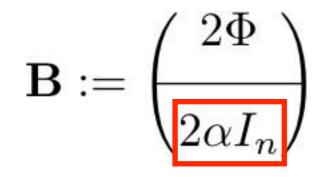
 $(x_1 \lor x_2) \land (\overline{x}_1 \lor x_3) \land (\overline{x}_2 \lor \overline{x}_3)$

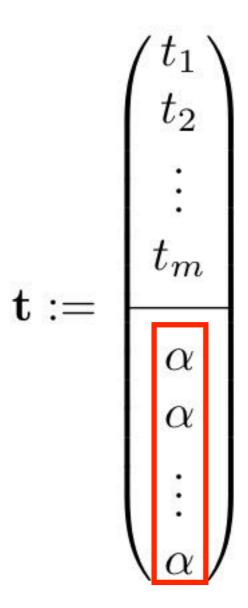
 $\Phi \in \mathbb{R}^{m \times n}$



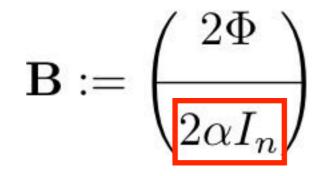
 $(x_1 \lor x_2) \land (\overline{x}_1 \lor x_3) \land (\overline{x}_2 \lor \overline{x}_3)$

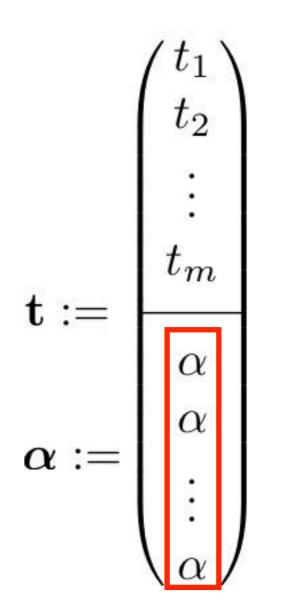
Noah Stephens-Davidowitz





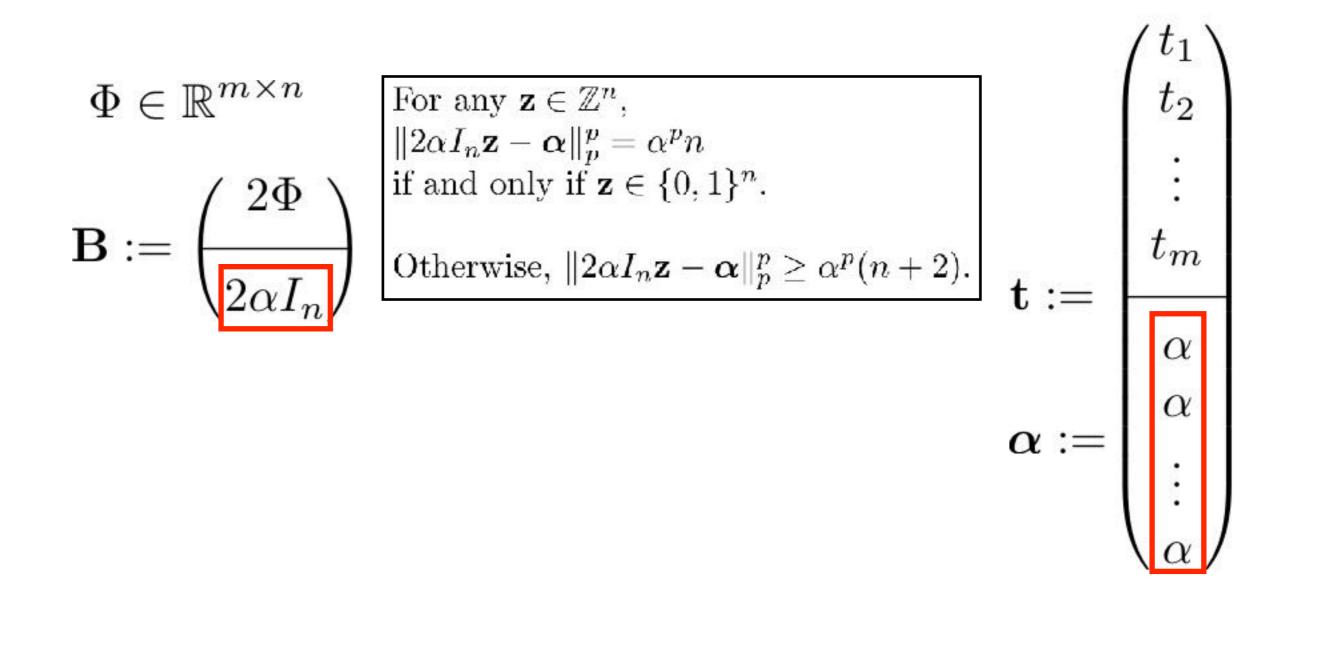
Noah Stephens-Davidowitz

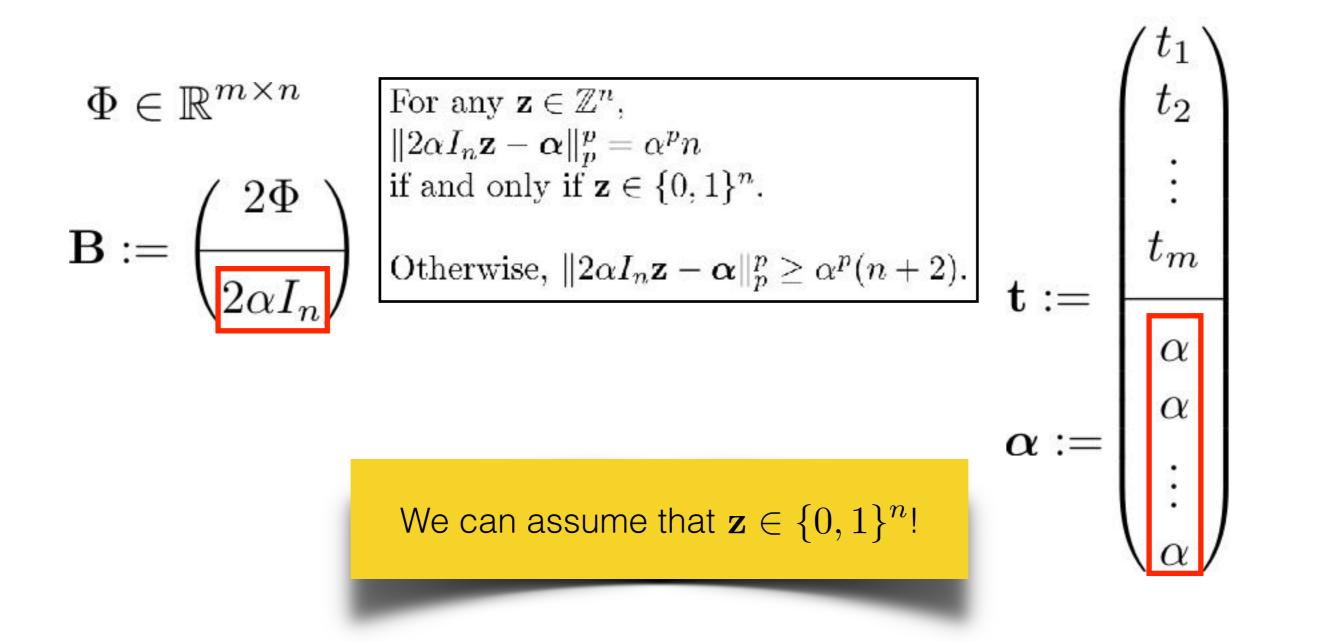




Noah Stephens-Davidowitz

Fine-grained hardness of lattice problems





Noah Stephens-Davidowitz

$$\Phi_{i,j} = \begin{cases} 1 & x_j \text{ appears in clause i} \\ -1 & \overline{x}_j \text{ appears in clause i} \\ 0 & \text{otherwise} \end{cases}$$

$$\Phi_{i,j} = \begin{cases} 1 & x_j \text{ appears in clause i} \\ -1 & \overline{x}_j \text{ appears in clause i} \\ 0 & \text{otherwise} \end{cases}$$

 $\mathbf{z} \in \{0,1\}^n$

$$\Phi_{i,j} = \begin{cases} 1 & x_j \text{ appears in clause i} \\ -1 & \overline{x}_j \text{ appears in clause i} \\ 0 & \text{otherwise} \end{cases}$$

 $\mathbf{z} \in \{0,1\}^n$

 $\Phi_i \mathbf{z} = (\# \text{ positive literals satisfied}) - (\# \text{ of negated literals not satisfied})$

 $\Phi_{i,j} = \begin{cases} 1 & x_j \text{ appears in clause i} \\ -1 & \overline{x}_j \text{ appears in clause i} \\ 0 & \text{otherwise} \end{cases} \quad t_i := 3 - 2 \cdot (\# \text{ of negated literals in clause } i)$

 $\mathbf{z} \in \{0,1\}^n$

 $\Phi_i \mathbf{z} = (\# \text{ positive literals satisfied}) - (\# \text{ of negated literals not satisfied})$

 $\Phi_{i,j} = \begin{cases} 1 & x_j \text{ appears in clause i} \\ -1 & \overline{x}_j \text{ appears in clause i} \\ 0 & \text{otherwise} \end{cases} \quad t_i := 3 - 2 \cdot (\# \text{ of negated literals in clause } i)$

 $\mathbf{z} \in \{0,1\}^n$

 $\Phi_i \mathbf{z} = (\# \text{ positive literals satisfied}) - (\# \text{ of negated literals not satisfied})$

 $2\Phi_i \mathbf{z} - t_i = 2(\# \text{ satisfied literals}) - 3$

 $\Phi_{i,j} = \begin{cases} 1 & x_j \text{ appears in clause i} \\ -1 & \overline{x}_j \text{ appears in clause i} \\ 0 & \text{otherwise} \end{cases} \quad t_i := 3 - 2 \cdot (\# \text{ of negated literals in clause } i)$

 $\mathbf{z} \in \{0,1\}^n$

 $\Phi_i \mathbf{z} = (\# \text{ positive literals satisfied}) - (\# \text{ of negated literals not satisfied})$

$$2\Phi_i \mathbf{z} - t_i = 2(\# \text{ satisfied literals}) - 3$$
$$|2\Phi_i \mathbf{z} - t_i| = \begin{cases} 1 & i \text{th clause is satisfied} \\ 3 & \text{otherwise} \end{cases}$$

 $\Phi_{i,j} = \begin{cases} 1 & x_j \text{ appears in clause i} \\ -1 & \overline{x}_j \text{ appears in clause i} \\ 0 & \text{otherwise} \end{cases} \quad t_i := 3 - 2 \cdot (\# \text{ of negated literals in clause } i)$

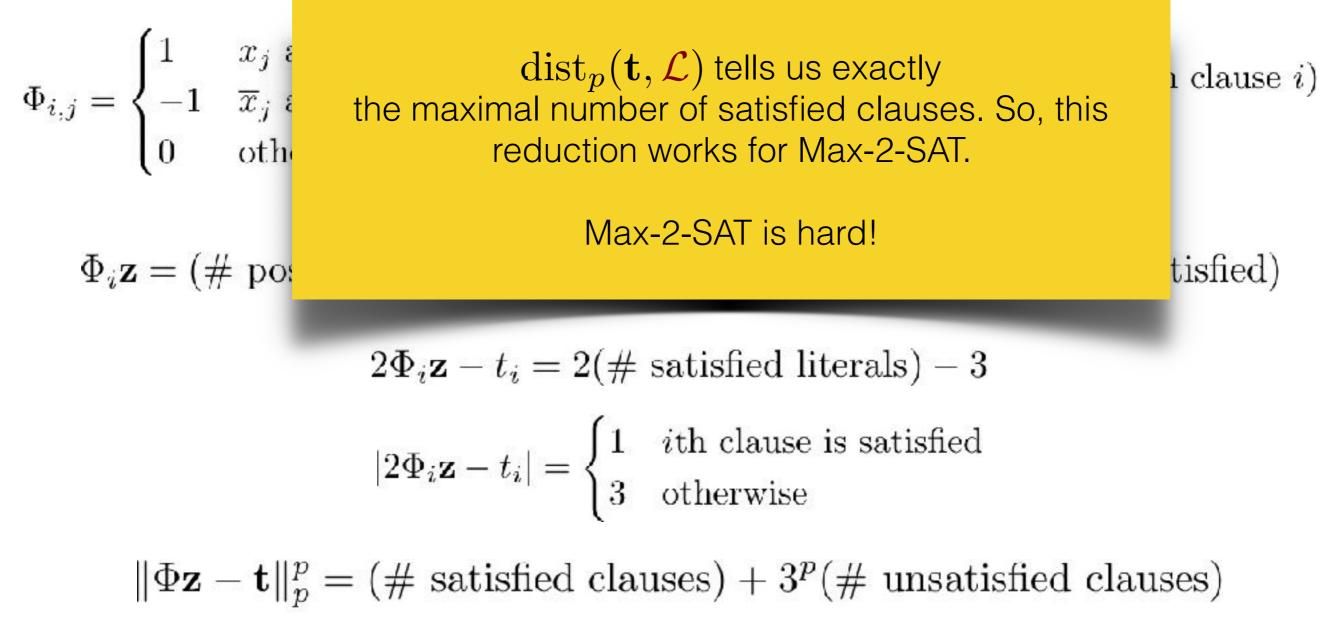
 $\mathbf{z} \in \{0,1\}^n$

 $\Phi_i \mathbf{z} = (\# \text{ positive literals satisfied}) - (\# \text{ of negated literals not satisfied})$

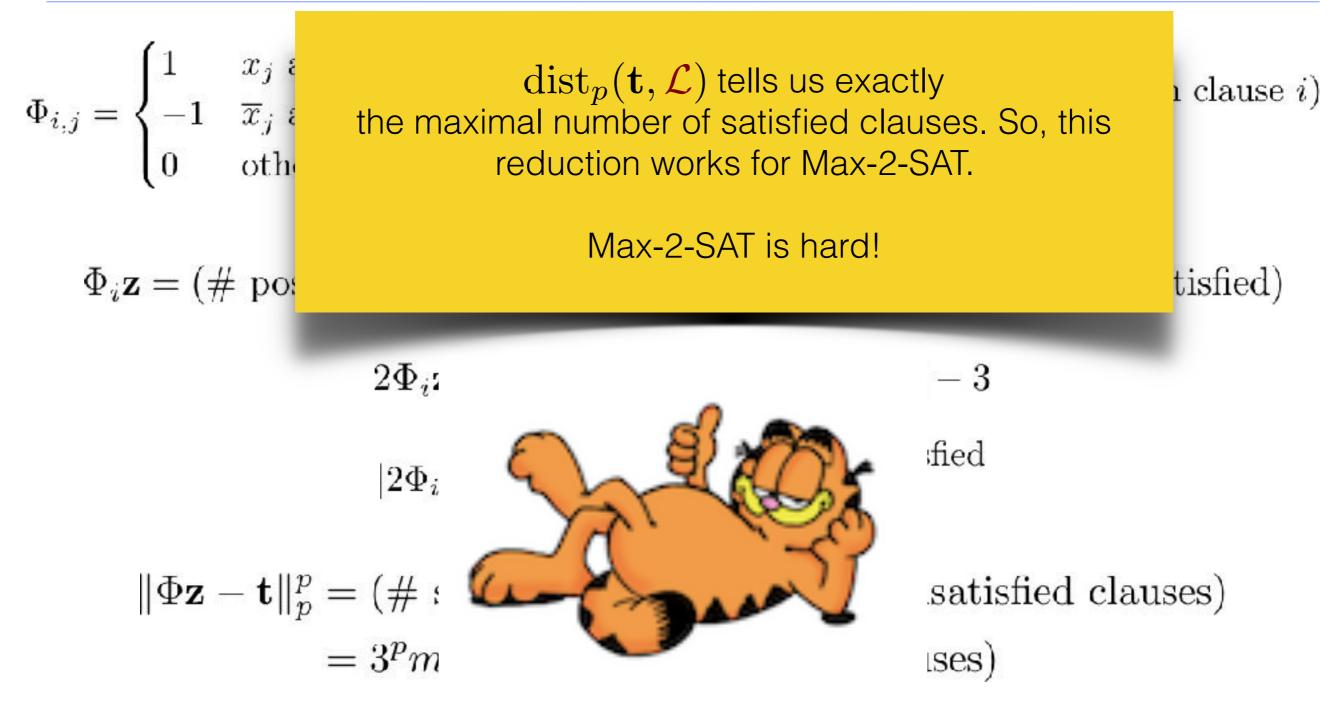
$$2\Phi_i \mathbf{z} - t_i = 2(\# \text{ satisfied literals}) - 3$$

 $|2\Phi_i \mathbf{z} - t_i| = \begin{cases} 1 & i \text{th clause is satisfied} \\ 3 & \text{otherwise} \end{cases}$

 $\|\Phi \mathbf{z} - \mathbf{t}\|_p^p = (\# \text{ satisfied clauses}) + 3^p(\# \text{ unsatisfied clauses})$ = $3^p m - (3^p - 1)(\# \text{ satisfied clauses})$



 $= 3^{p}m - (3^{p} - 1)(\# \text{ satisfied clauses})$



Noah Stephens-Davidowitz

• Max-2-SAT is "ETH-hard." I.e., assuming SETH (or just ETH), there is no $2^{o(n)}$ -time algorithm for Max-2-SAT.

- Max-2-SAT is "ETH-hard." I.e., assuming SETH (or just ETH), there is no 2^{o(n)}time algorithm for Max-2-SAT.
 - Assuming SETH (or just ETH), there is no $2^{o(n)}$ -time algorithm for CVP.

- Max-2-SAT is "ETH-hard." I.e., assuming SETH (or just ETH), there is no 2^{o(n)}time algorithm for Max-2-SAT.
 - Assuming SETH (or just ETH), there is no $2^{o(n)}$ -time algorithm for CVP.
 - (Result already known in folklore, and unpublished work [Yeom15].)

- Max-2-SAT is "ETH-hard." I.e., assuming SETH (or just ETH), there is no $2^{o(n)}$ -time algorithm for Max-2-SAT.
 - Assuming SETH (or just ETH), there is no $2^{o(n)}$ -time algorithm for CVP.
 - (Result already known in folklore, and unpublished work [Yeom15].)
- Fastest algorithm for Max-2-SAT runs in time $2^{\omega n/3} > 2^{0.78n}$ [Will05].

- Max-2-SAT is "ETH-hard." I.e., assuming SETH (or just ETH), there is no 2^{o(n)}time algorithm for Max-2-SAT.
 - Assuming SETH (or just ETH), there is no $2^{o(n)}$ -time algorithm for CVP.
 - (Result already known in folklore, and unpublished work [Yeom15].)
- Fastest algorithm for Max-2-SAT runs in time $2^{\omega n/3} > 2^{0.78n}$ [Will05].
 - Assuming this is optimal, then there is no $2^{0.78n}$ -time algorithm for CVP_p for any p.

- Max-2-SAT is "ETH-hard." I.e., assuming SETH (or just ETH), there is no 2^{o(n)}time algorithm for Max-2-SAT.
 - Assuming SETH (or just ETH), there is no $2^{o(n)}$ -time algorithm for CVP.
 - (Result already known in folklore, and unpublished work [Yeom15].)
- Fastest algorithm for Max-2-SAT runs in time $2^{\omega n/3} > 2^{0.78n}$ [Will05].
 - Assuming this is optimal, then there is no $2^{0.78n}$ -time algorithm for CVP_p for any p.
 - (Compare to $2^{n+o(n)}$ -time algorithm for CVP_2 .)

What did we just prove?

- Max-2-SAT is "ETH-hard." I.e., assuming SETH (or just ETH), there is no 2^{o(n)}time algorithm for Max-2-SAT.
 - Assuming SETH (or just ETH), there is no $2^{o(n)}$ -time algorithm for CVP.
 - (Result already known in folklore, and unpublished work [Yeom15].)
- Fastest algorithm for Max-2-SAT runs in time $2^{\omega n/3} > 2^{0.78n}$ [Will05].
 - Assuming this is optimal, then there is no $2^{0.78n}$ -time algorithm for CVP_p for any p.
 - (Compare to $2^{n+o(n)}$ -time algorithm for CVP_2 .)

What did we just prove?

- Max-2-SAT is "ETH-hard." I.e., assuming SETH (or just ETH), there is no $2^{o(n)}$ -time algorithm for Max-2-SAT.
 - Assuming SETH (or just ETH), there is no $2^{o(n)}$ -time algorithm for CVP.
 - (Result already known in folklore, and unpublished work [Yeom15].)
- Fastest algorithm for Max-2-SAT runs in time $2^{\omega n/3} > 2^{0.78n}$ [Will05].
 - Assuming this is optimal, then there is no $2^{0.78n}$ -time algorithm for CVP_p for any p.
 - (Compare to $2^{n+o(n)}$ -time algorithm for CVP_2 .)

Not a very safe assumption...

 $2\Phi_i \mathbf{z} - t_i = 2(\# \text{ satisfied literals}) - 3$

$2\Phi_i \mathbf{z} - t_i = 2(\# \text{ satisfied literals}) - 3$

• A 2-SAT clause is satisfied if and only if the number of satisfied literals is 1 or 2.

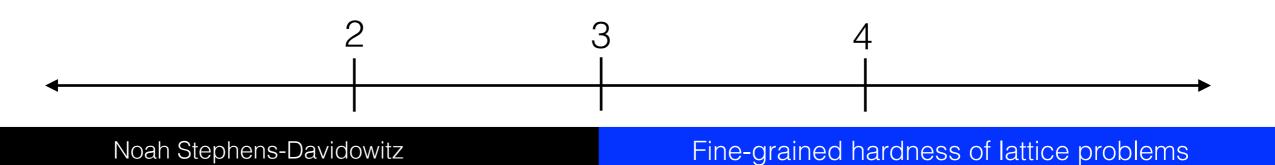
$$2\Phi_i \mathbf{z} - t_i = 2(\# \text{ satisfied literals}) - 3$$

- A 2-SAT clause is satisfied if and only if the number of satisfied literals is 1 or 2.
- Therefore $|2\Phi_i \mathbf{z} t_i| = 1$ if and only if the clause is satisfied.

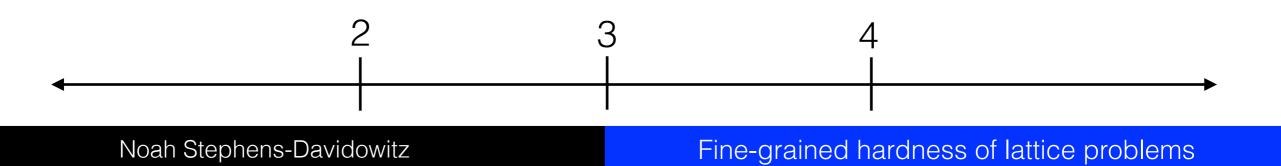
- A 2-SAT clause is satisfied if and only if the number of satisfied literals is 1 or 2.
- Therefore $|2\Phi_i \mathbf{z} t_i| = 1$ if and only if the clause is satisfied.
 - 2 and 4 are equidistant from 3!

$$2\Phi_i \mathbf{z} - t_i = 2(\# \text{ satisfied literals}) - 3$$

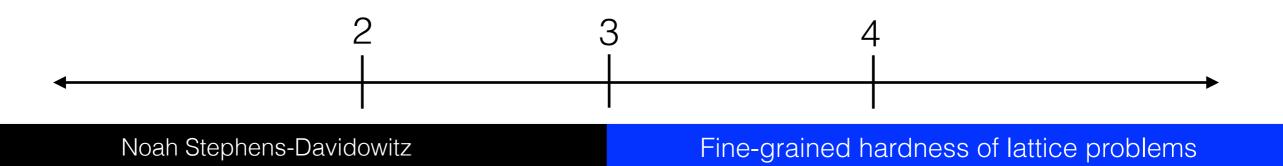
- A 2-SAT clause is satisfied if and only if the number of satisfied literals is 1 or 2.
- Therefore $|2\Phi_i \mathbf{z} t_i| = 1$ if and only if the clause is satisfied.
 - 2 and 4 are equidistant from 3!



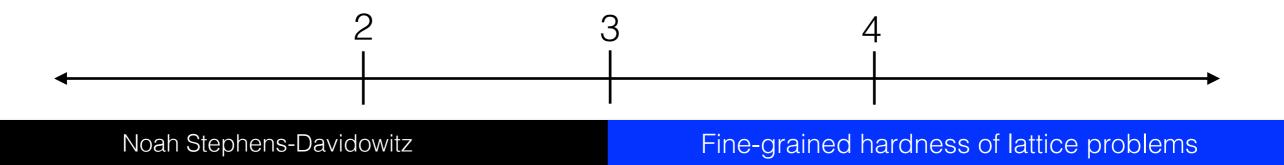
- A 2-SAT clause is satisfied if and only if the number of satisfied literals is 1 or 2.
- Therefore $|2\Phi_i \mathbf{z} t_i| = 1$ if and only if the clause is satisfied.
 - 2 and 4 are equidistant from 3!
- A 3-SAT clause is satisfied if and only if the number of satisfied literals is 1, 2, or 3.



- A 2-SAT clause is satisfied if and only if the number of satisfied literals is 1 or 2.
- Therefore $|2\Phi_i \mathbf{z} t_i| = 1$ if and only if the clause is satisfied.
 - 2 and 4 are equidistant from 3!
- A 3-SAT clause is satisfied if and only if the number of satisfied literals is 1, 2, or 3.
 - If we try the same construction with 3-SAT, we'll fail.



- A 2-SAT clause is satisfied if and only if the number of satisfied literals is 1 or 2.
- Therefore $|2\Phi_i \mathbf{z} t_i| = 1$ if and only if the clause is satisfied.
 - 2 and 4 are equidistant from 3!
- A 3-SAT clause is satisfied if and only if the number of satisfied literals is 1, 2, or 3.
 - If we try the same construction with 3-SAT, we'll fail.
 - We can't find 3 distinct numbers that are equidistant from some other number...



We can't find many distinct numbers that are equidistant from some other number...

We can't find many distinct numbers that are equidistant from some other number...

But, we can find many distinct vectors that are equidistant from some other vector

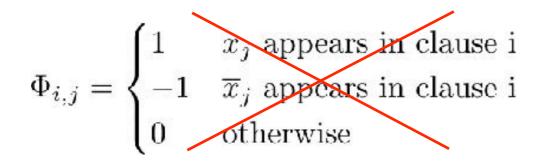
We can't find many distinct numbers that are equidistant from some other number...

But, we can find many distinct vectors that are equidistant from some other vector

 $\Phi_{i,j} = \begin{cases} 1 & x_j \text{ appears in clause i} \\ -1 & \overline{x}_j \text{ appears in clause i} \\ 0 & \text{otherwise} \end{cases}$

We can't find many distinct numbers that are equidistant from some other number...

But, we can find many distinct vectors that are equidistant from some other vector



We can't find many distinct numbers that are equidistant from some other number...

But, we can find many distinct vectors that are equidistant from some other vector

$$\Phi_{i,j} = \begin{cases} 1 & x_j \text{ appears in clause i} \\ -1 & \overline{x}_j \text{ appears in clause i} \\ 0 & \text{otherwise} \end{cases} \quad \Phi_{i,j} := \begin{cases} \mathbf{v}_\ell & \text{if } x_j \text{ is the } \ell \text{th literal in clause } i \\ -\mathbf{v}_\ell & \text{if } \overline{x}_j \text{ is the } \ell \text{th literal in clause } i \\ 0 & \text{otherwise} \end{cases}$$

We can't find many distinct numbers that are equidistant from some other number...

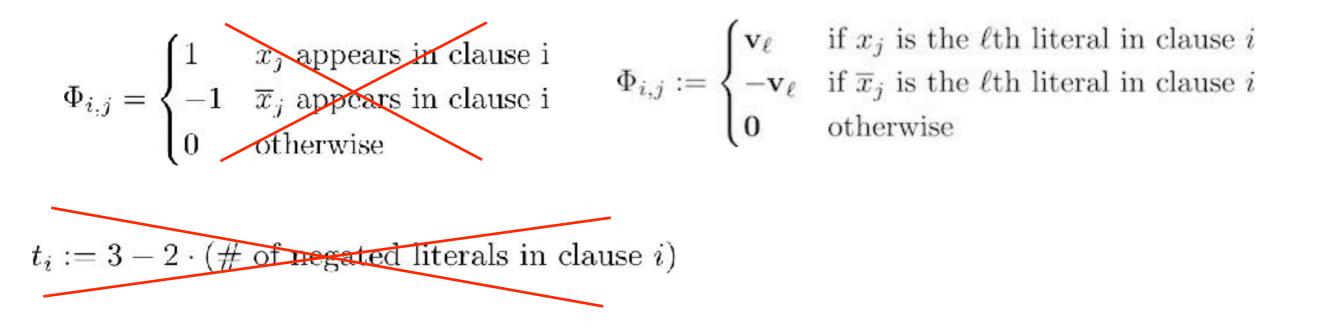
But, we can find many distinct vectors that are equidistant from some other vector

$$\Phi_{i,j} = \begin{cases} 1 & x_j \text{ appears in clause i} \\ -1 & \overline{x}_j \text{ appears in clause i} \\ 0 & \text{otherwise} \end{cases} \quad \Phi_{i,j} := \begin{cases} \mathbf{v}_{\ell} & \text{if } x_j \text{ is the } \ell \text{th literal in clause } i \\ -\mathbf{v}_{\ell} & \text{if } \overline{x}_j \text{ is the } \ell \text{th literal in clause } i \\ 0 & \text{otherwise} \end{cases}$$

 $t_i := 3 - 2 \cdot (\# \text{ of negated literals in clause } i)$

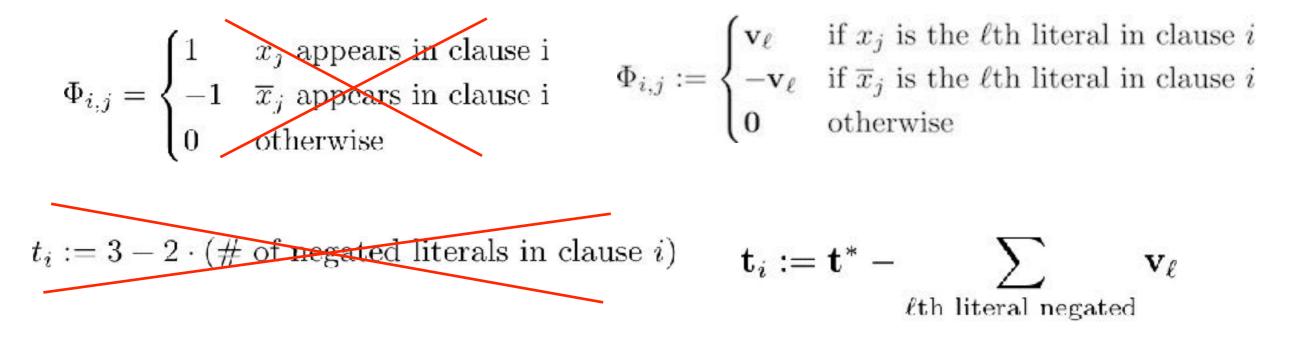
We can't find many distinct numbers that are equidistant from some other number...

But, we can find many distinct vectors that are equidistant from some other vector



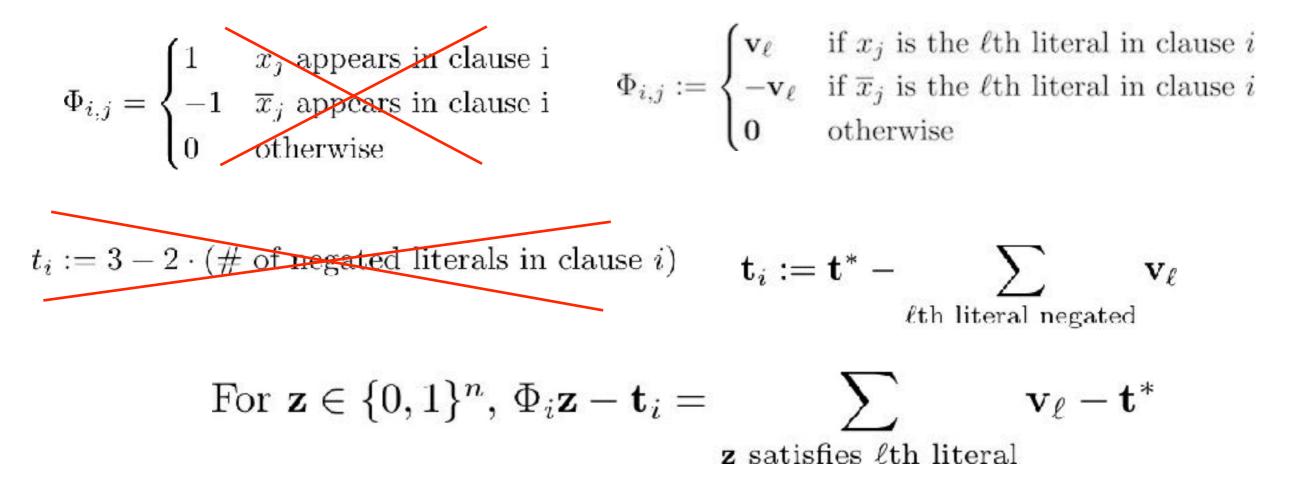
We can't find many distinct numbers that are equidistant from some other number...

But, we can find many distinct vectors that are equidistant from some other vector



We can't find many distinct numbers that are equidistant from some other number...

But, we can find many distinct vectors that are equidistant from some other vector



For
$$\mathbf{z} \in \{0, 1\}^n$$
, $\Phi_i \mathbf{z} - \mathbf{t}_i = \sum_{\mathbf{z} \text{ satisfies } \ell \text{th literal}} \mathbf{v}_{\ell} - \mathbf{t}^*$

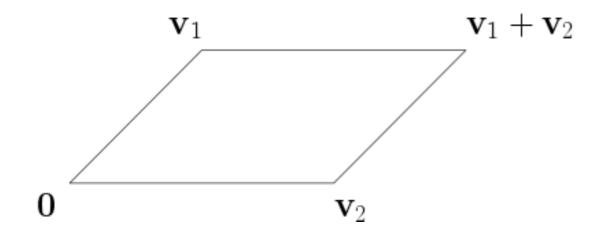
For
$$\mathbf{z} \in \{0,1\}^n$$
, $\Phi_i \mathbf{z} - \mathbf{t}_i = \sum_{\mathbf{z} \text{ satisfies } \ell \text{th literal}} \mathbf{v}_{\ell} - \mathbf{t}^*$

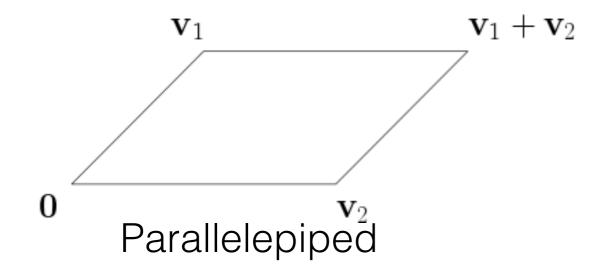
We want the norm of this vector to be *constant* and smaller than the norm of t^* whenever the sum is non-empty.

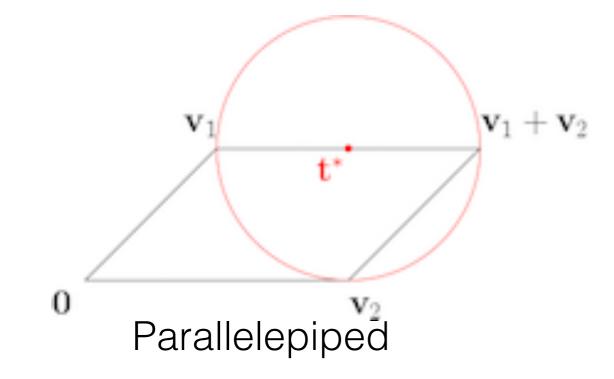
For
$$\mathbf{z} \in \{0,1\}^n$$
, $\Phi_i \mathbf{z} - \mathbf{t}_i = \sum_{\mathbf{z} \text{ satisfies } \ell \text{th literal}} \mathbf{v}_{\ell} - \mathbf{t}^*$

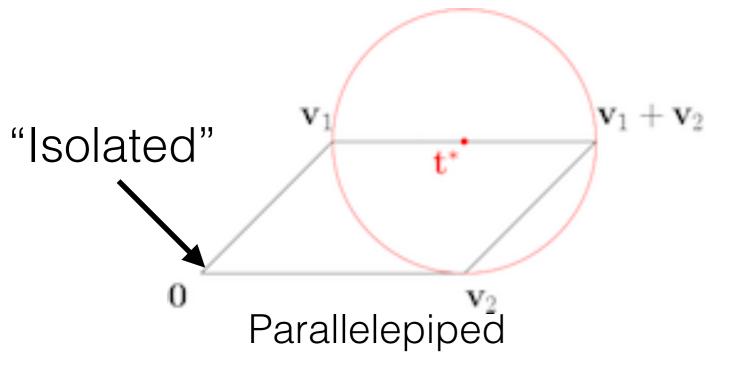
We want the norm of this vector to be *constant* and smaller than the norm of **t**^{*} whenever the sum is non-empty.

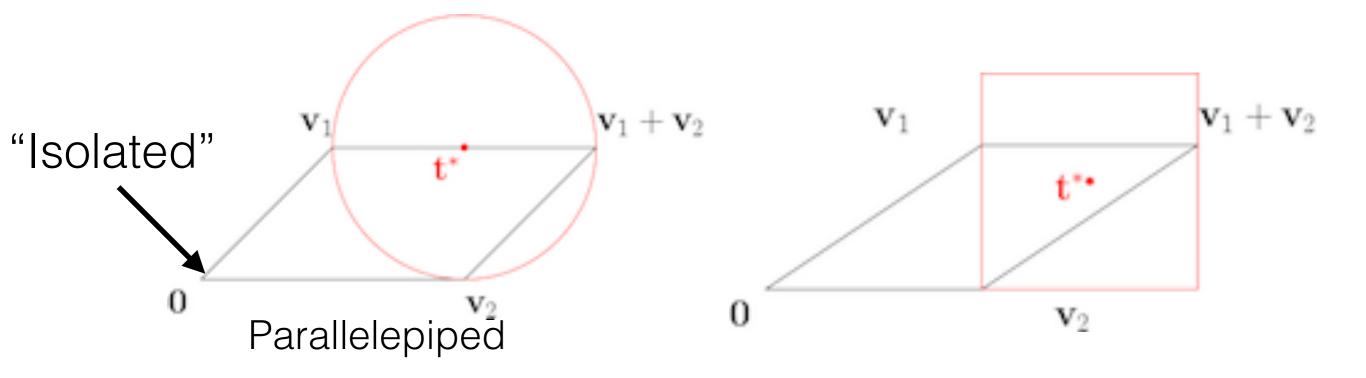
Goal: Find $V = (\mathbf{v}_1, \dots, \mathbf{v}_k) \in \mathbb{R}^{m \times k}$ and $\mathbf{t}^* \in \mathbb{R}^m$ such that for all non-zero $\mathbf{y} \in \{0, 1\}^k$, $\|V\mathbf{y} - \mathbf{t}^*\|_p = 1$, but $\|\mathbf{t}^*\|_p > 1$.











Fine-grained hardness of lattice problems

Goal: Find $V = (\mathbf{v}_1, \dots, \mathbf{v}_k) \in \mathbb{R}^{m \times k}$ and $\mathbf{t}^* \in \mathbb{R}^m$ such that for all non-zero $\mathbf{y} \in \{0, 1\}^k$, $\|V\mathbf{y} - \mathbf{t}^*\|_p = 1$, but $\|\mathbf{t}^*\|_p > 1$.

Do these things even exist for large k?

Goal: Find $V = (\mathbf{v}_1, \dots, \mathbf{v}_k) \in \mathbb{R}^{m \times k}$ and $\mathbf{t}^* \in \mathbb{R}^m$ such that for all non-zero $\mathbf{y} \in \{0, 1\}^k$, $\|V\mathbf{y} - \mathbf{t}^*\|_p = 1$, but $\|\mathbf{t}^*\|_p > 1$.

Do these things even exist for large k?

• "Most of the time," they do!

Goal: Find $V = (\mathbf{v}_1, \dots, \mathbf{v}_k) \in \mathbb{R}^{m \times k}$ and $\mathbf{t}^* \in \mathbb{R}^m$ such that for all non-zero $\mathbf{y} \in \{0, 1\}^k$, $\|V\mathbf{y} - \mathbf{t}^*\|_p = 1$, but $\|\mathbf{t}^*\|_p > 1$.

Do these things even exist for large k?

- "Most of the time," they do!
- For odd integers p, they exist for all k.

Goal: Find $V = (\mathbf{v}_1, \dots, \mathbf{v}_k) \in \mathbb{R}^{m \times k}$ and $\mathbf{t}^* \in \mathbb{R}^m$ such that for all non-zero $\mathbf{y} \in \{0, 1\}^k$, $\|V\mathbf{y} - \mathbf{t}^*\|_p = 1$, but $\|\mathbf{t}^*\|_p > 1$.

Do these things even exist for large k?

- "Most of the time," they do!
- For odd integers p, they exist for all k.
 - If SETH holds, then for all odd integers p, there is no $2^{0.99n}$ -time algorithm for $CVP_p!!!$

Goal: Find $V = (\mathbf{v}_1, \dots, \mathbf{v}_k) \in \mathbb{R}^{m \times k}$ and $\mathbf{t}^* \in \mathbb{R}^m$ such that for all non-zero $\mathbf{y} \in \{0, 1\}^k$, $\|V\mathbf{y} - \mathbf{t}^*\|_p = 1$, but $\|\mathbf{t}^*\|_p > 1$.

- "Most of the time," they do!
- For odd integers p, they exist for all k.
 - If SETH holds, then for all odd integers p, there is no $2^{0.99n}$ -time algorithm for $CVP_p!!!$
 - (Try p = 1 yourself.)

Goal: Find $V = (\mathbf{v}_1, \dots, \mathbf{v}_k) \in \mathbb{R}^{m \times k}$ and $\mathbf{t}^* \in \mathbb{R}^m$ such that for all non-zero $\mathbf{y} \in \{0, 1\}^k$, $\|V\mathbf{y} - \mathbf{t}^*\|_p = 1$, but $\|\mathbf{t}^*\|_p > 1$.

- "Most of the time," they do!
- For odd integers p, they exist for all k.
 - If SETH holds, then for all odd integers p, there is no $2^{0.99n}$ -time algorithm for $CVP_p!!!$
 - (Try p = 1 yourself.)
- For even integers p, they exist if and only if $k \leq p$.

Goal: Find $V = (\mathbf{v}_1, \dots, \mathbf{v}_k) \in \mathbb{R}^{m \times k}$ and $\mathbf{t}^* \in \mathbb{R}^m$ such that for all non-zero $\mathbf{y} \in \{0, 1\}^k$, $\|V\mathbf{y} - \mathbf{t}^*\|_p = 1$, but $\|\mathbf{t}^*\|_p > 1$.

- "Most of the time," they do!
- For odd integers p, they exist for all k.
 - If SETH holds, then for all odd integers p, there is no $2^{0.99n}$ -time algorithm for $CVP_p!!!$
 - (Try p = 1 yourself.)
- For even integers p, they exist if and only if $k \leq p$.
 - Two is an even integer :(.

Goal: Find $V = (\mathbf{v}_1, \dots, \mathbf{v}_k) \in \mathbb{R}^{m \times k}$ and $\mathbf{t}^* \in \mathbb{R}^m$ such that for all non-zero $\mathbf{y} \in \{0, 1\}^k$, $\|V\mathbf{y} - \mathbf{t}^*\|_p = 1$, but $\|\mathbf{t}^*\|_p > 1$.

- "Most of the time," they do!
- For odd integers p, they exist for all k.
 - If SETH holds, then for all odd integers p, there is no $2^{0.99n}$ -time algorithm for $CVP_p!!!$
 - (Try p = 1 yourself.)
- For even integers p, they exist if and only if $k \leq p$.
 - Two is an even integer :(.
- For any fixed k, they exist for all but finitely many values of p.

Goal: Find $V = (\mathbf{v}_1, \dots, \mathbf{v}_k) \in \mathbb{R}^{m \times k}$ and $\mathbf{t}^* \in \mathbb{R}^m$ such that for all non-zero $\mathbf{y} \in \{0, 1\}^k$, $\|V\mathbf{y} - \mathbf{t}^*\|_p = 1$, but $\|\mathbf{t}^*\|_p > 1$.

- "Most of the time," they do!
- For odd integers p, they exist for all k.
 - If SETH holds, then for all odd integers p, there is no $2^{0.99n}$ -time algorithm for $CVP_p!!!$
 - (Try p = 1 yourself.)
- For even integers p, they exist if and only if $k \leq p$.
 - Two is an even integer :(.
- For any fixed k, they exist for all but finitely many values of p.
- For any k and any $p(n) = p_0 + \delta(n)$ with $\delta(n) \neq 0$ and $\delta(n) \rightarrow 0$, they exist for sufficiently large n.

Goal: Find $V = (\mathbf{v}_1, \dots, \mathbf{v}_k) \in \mathbb{R}^{m \times k}$ and $\mathbf{t}^* \in \mathbb{R}^m$ such that for all non-zero $\mathbf{y} \in \{0, 1\}^k$, $\|V\mathbf{y} - \mathbf{t}^*\|_p = 1$, but $\|\mathbf{t}^*\|_p > 1$.

- "Most of the time," they do!
- For odd integers p, they exist for all k.
 - If SETH holds, then for all odd integers p, there is no $2^{0.99n}$ -time algorithm for $CVP_p!!!$
 - (Try p = 1 yourself.)
- For even integers p, they exist if and only if $k \leq p$.
 - Two is an even integer :(.
- For any fixed k, they exist for all but finitely many values of p.
- For any k and any $p(n) = p_0 + \delta(n)$ with $\delta(n) \neq 0$ and $\delta(n) \rightarrow 0$, they exist for sufficiently large n.
 - If SETH holds, then no $2^{0.99n}$ -time algorithm solves CVP_p for such p!!!

$$V =$$

$$V = \left(\begin{array}{rrr} 1 & 1 & 1 \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

$$V = \left(\begin{array}{ccc} 1 & 1 & 1 \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\$$

$$V = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

$$V = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

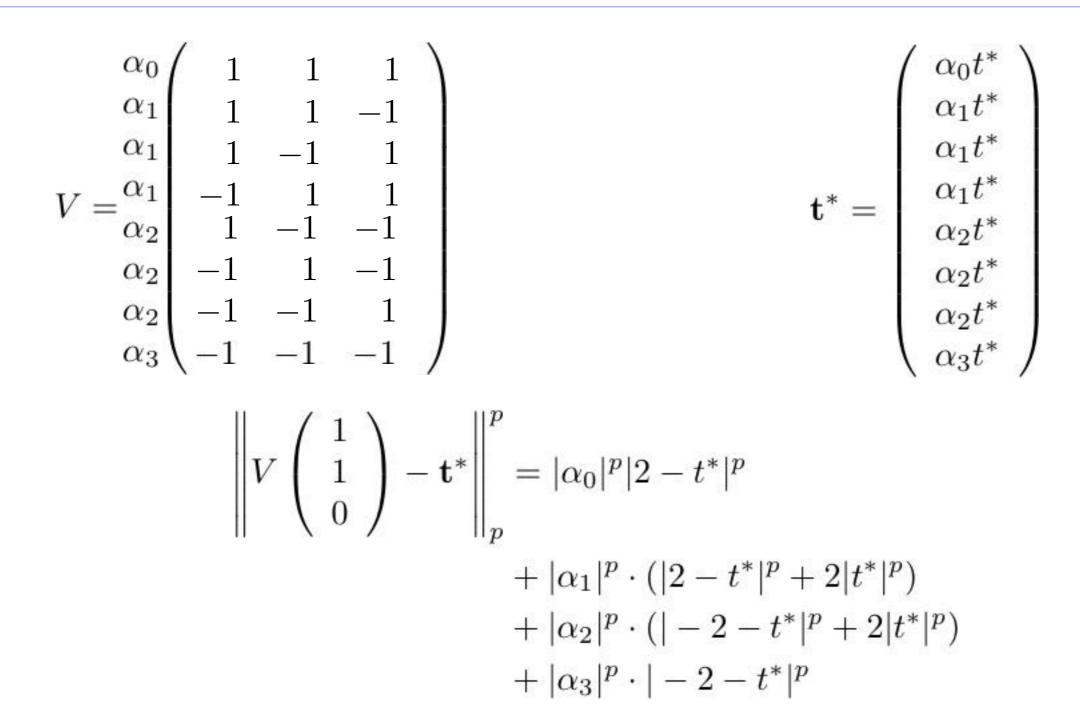
$$V = \alpha_{1} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \\ \end{pmatrix} \begin{pmatrix} y_{1} + y_{2} + y_{3} \\ y_{1} + y_{2} - y_{3} \\ y_{1} - y_{2} + y_{3} \\ -y_{1} + y_{2} + y_{3} \end{pmatrix}$$

$$V = {\begin{array}{*{20}c} \alpha_0 \\ \alpha_1 \\ \alpha_1 \\ 1 \\ 1 \\ 1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1$$

$$V = {\begin{array}{*{20}c} \alpha_0 \\ \alpha_1 \\ \alpha_1 \\ \alpha_1 \\ 1 \\ 1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\$$

$$\mathbf{t}^* = \begin{pmatrix} \alpha_0 t^* \\ \alpha_1 t^* \\ \alpha_1 t^* \\ \alpha_1 t^* \\ \alpha_2 t^* \\ \alpha_2 t^* \\ \alpha_2 t^* \\ \alpha_3 t^* \end{pmatrix}$$

Noah Stephens-Davidowitz



$$V = \begin{pmatrix} \alpha_0 \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \\ This is linear in the |\alpha_i|^p \\ So, it suffices to find t^* such that the resulting system of linear equations in the $|\alpha_i|^p$ has a (non-negative) solution.

$$\begin{aligned} & \alpha_0 \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \\ & \alpha_0 t^* \\ & \alpha_0 t^* \end{pmatrix} \\ & \| V \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - t^* \|_p^p = |\alpha_0|^p |2 - t^*|^p \\ & + |\alpha_1|^p \cdot (|2 - t^*|^p + 2|t^*|^p) \\ & + |\alpha_2|^p \cdot (|-2 - t^*|^p + 2|t^*|^p) \\ & + |\alpha_3|^p \cdot |-2 - t^*|^p \end{aligned}$$$$

Want to solve
$$M(t^*) \cdot \begin{pmatrix} |\alpha_0|^p \\ |\alpha_1|^p \\ \vdots \\ |\alpha_k|^p \end{pmatrix} = \begin{pmatrix} 1+\varepsilon \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

Want to solve
$$M(t^*) \cdot \begin{pmatrix} |\alpha_0|^p \\ |\alpha_1|^p \\ \vdots \\ |\alpha_k|^p \end{pmatrix} = \begin{pmatrix} 1+\varepsilon \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

• $M(t^*)$ is stochastic. I.e., if we set $\alpha_0 = \alpha_1 = \cdots = \alpha_k$, then the distances will all be the same.

Want to solve
$$M(t^*) \cdot \begin{pmatrix} |\alpha_0|^p \\ |\alpha_1|^p \\ \vdots \\ |\alpha_k|^p \end{pmatrix} = \begin{pmatrix} 1+\varepsilon \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

- $M(t^*)$ is stochastic. I.e., if we set $\alpha_0 = \alpha_1 = \cdots = \alpha_k$, then the distances will all be the same.
- Therefore, it suffices to find t^* such that $M(t^*)$ is non-singular.

Want to solve
$$M(t^*) \cdot \begin{pmatrix} |\alpha_0|^p \\ |\alpha_1|^p \\ \vdots \\ |\alpha_k|^p \end{pmatrix} = \begin{pmatrix} 1+\varepsilon \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

- $M(t^*)$ is stochastic. I.e., if we set $\alpha_0 = \alpha_1 = \cdots = \alpha_k$, then the distances will all be the same.
- Therefore, it suffices to find t^* such that $M(t^*)$ is non-singular.
- Entries in $M(t^*)$ look like $\sum_i a_i |b_i t^*|^p$.

Want to solve
$$M(t^*) \cdot \begin{pmatrix} |\alpha_0|^p \\ |\alpha_1|^p \\ \vdots \\ |\alpha_k|^p \end{pmatrix} = \begin{pmatrix} 1+\varepsilon \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

- $M(t^*)$ is stochastic. I.e., if we set $\alpha_0 = \alpha_1 = \cdots = \alpha_k$, then the distances will all be the same.
- Therefore, it suffices to find t^* such that $M(t^*)$ is non-singular.
- Entries in $M(t^*)$ look like $\sum a_i |b_i t^*|^p$.
 - Piecewise polynomial in t^* when p is an integer.

Want to solve
$$M(t^*) \cdot \begin{pmatrix} |\alpha_0|^p \\ |\alpha_1|^p \\ \vdots \\ |\alpha_k|^p \end{pmatrix} = \begin{pmatrix} 1+\varepsilon \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

- $M(t^*)$ is stochastic. I.e., if we set $\alpha_0 = \alpha_1 = \cdots = \alpha_k$, then the distances will all be the same.
- Therefore, it suffices to find t^* such that $M(t^*)$ is non-singular.
- Entries in $M(t^*)$ look like $\sum a_i |b_i t^*|^p$.
 - Piecewise polynomial in t^* when p is an integer.
 - $det(M(t^*))$ is a piecewise polynomial in t^* .

Want to solve
$$M(t^*) \cdot \begin{pmatrix} |\alpha_0|^p \\ |\alpha_1|^p \\ \vdots \\ |\alpha_k|^p \end{pmatrix} = \begin{pmatrix} 1+\varepsilon \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

- $M(t^*)$ is stochastic. I.e., if we set $\alpha_0 = \alpha_1 = \cdots = \alpha_k$, then the distances will all be the same.
- Therefore, it suffices to find t^* such that $M(t^*)$ is non-singular.
- Entries in $M(t^*)$ look like $\sum a_i |b_i t^*|^p$.
 - Piecewise polynomial in t^* when p is an integer.
 - $det(M(t^*))$ is a piecewise polynomial in t^* .
 - We show that it is not always the zero polynomial when p is odd.

Also, Approximate CVP

Max-2-SAT reduction \Rightarrow hardness of $(1 + \varepsilon)$ -approx CVP_p for all p.

Also, Approximate CVP

Max-2-SAT reduction \Rightarrow hardness of $(1 + \varepsilon)$ -approx CVP_p for all p.

Formally GapETH hardness.

Also, Approximate CVP

Max-2-SAT reduction \Rightarrow hardness of $(1 + \varepsilon)$ -approx CVP_p for all p.

Formally GapETH hardness.

No $2^{o(n)}$ -time for approx Max-2-SAT \Rightarrow No $2^{o(n)}$ -time for approx CVP_p .

Problem	Upper Bound	Lower Bounds				Notes
		SETH	Max-2-SAT	ETH	Gap-ETH	
CVP_p	$n^{O(n)} (2^{O(n)})$	2^n	$2^{\omega n/3}$	$2^{\Omega(n)}$	$2^{\Omega(n)*}$	"almost all" $p \notin 2\mathbb{Z}$
CVP_2	2^n		$2^{\omega n/3}$	$2^{\Omega(n)}$	$2^{\Omega(n)*}$	
$CVP_{\infty}/SVP_{\infty}$	$2^{O(n)}$	2^{n*}		$2^{\Omega(n)}$	$2^{\Omega(n)}*$	
CVPP_p	$n^{O(n)} (2^{O(n)})$		$2^{\Omega(\sqrt{n})}$	$2^{\Omega(\sqrt{n})}$		

Blue = new result.

*

= hardness for some constant approximation factor

Problem	Upper Bound	Lower Bounds				Notes
		SETH	Max-2-SAT	ETH	Gap-ETH	
CVP_p	$n^{O(n)} (2^{O(n)})$	2^n	$2^{\omega n/3}$	$2^{\Omega(n)}$	$2^{\Omega(n)*}$	"almost all" $p \notin 2\mathbb{Z}$
CVP_2	2^n		$2^{\omega n/3}$	$2^{\Omega(n)}$	$2^{\Omega(n)*}$	
$\text{CVP}_{\infty}/\text{SVP}_{\infty}$	$2^{O(n)}$	2^{n*}		$2^{\Omega(n)}$	$2^{\Omega(n)*}$	
CVPP_p	$n^{O(n)} (2^{O(n)})$		$2^{\Omega(\sqrt{n})}$	$2^{\Omega(\sqrt{n})}$		

Blue = new result.

- (...) = approximation algorithm
 - = hardness for some constant approximation factor

Pros

Problem	Upper Bound	Lower Bounds				Notes
		SETH	Max-2-SAT	ETH	Gap-ETH	
CVP_p	$n^{O(n)} (2^{O(n)})$	2^n	$2^{\omega n/3}$	$2^{\Omega(n)}$	$2^{\Omega(n)*}$	"almost all" $p \notin 2\mathbb{Z}$
CVP_2	2^n		$2^{\omega n/3}$	$2^{\Omega(n)}$	$2^{\Omega(n)*}$	
$CVP_{\infty}/SVP_{\infty}$	$2^{O(n)}$	2^{n*}		$2^{\Omega(n)}$	$2^{\Omega(n)}*$	
CVPP_p	$n^{O(n)} (2^{O(n)})$		$2^{\Omega(\sqrt{n})}$	$2^{\Omega(\sqrt{n})}$		

Blue = new result.

= hardness for some constant approximation factor

<u>Pros</u>

• We actually proved something!

*

Problem	Upper Bound	Lower Bounds				Notes
		SETH	Max-2-SAT	ETH	Gap-ETH	
CVP_p	$n^{O(n)} (2^{O(n)})$	2^n	$2^{\omega n/3}$	$2^{\Omega(n)}$	$2^{\Omega(n)*}$	"almost all" $p \notin 2\mathbb{Z}$
CVP_2	2^n		$2^{\omega n/3}$	$2^{\Omega(n)}$	$2^{\Omega(n)*}$	
$CVP_{\infty}/SVP_{\infty}$	$2^{O(n)}$	2^{n*}		$2^{\Omega(n)}$	$2^{\Omega(n)}*$	
CVPP_p	$n^{O(n)} (2^{O(n)})$		$2^{\Omega(\sqrt{n})}$	$2^{\Omega(\sqrt{n})}$		

Blue = new result.

= hardness for some constant approximation factor

Pros

*

- We actually proved something!
- It's sort of tight!

Problem	Upper Bound	Lower Bounds			Notes	
		SETH	Max-2-SAT	ETH	Gap-ETH	
CVP_p	$n^{O(n)} (2^{O(n)})$	2^n	$2^{\omega n/3}$	$2^{\Omega(n)}$	$2^{\Omega(n)*}$	"almost all" $p \notin 2\mathbb{Z}$
CVP_2	2^n		$2^{\omega n/3}$	$2^{\Omega(n)}$	$2^{\Omega(n)*}$	
$CVP_{\infty}/SVP_{\infty}$	$2^{O(n)}$	2^{n*}		$2^{\Omega(n)}$	$2^{\Omega(n)*}$	
CVPP_p	$n^{O(n)} (2^{O(n)})$		$2^{\Omega(\sqrt{n})}$	$2^{\Omega(\sqrt{n})}$		

Blue = new result.

= hardness for some constant approximation factor

<u>Pros</u>

*

Cons

- We actually proved something!
- It's sort of tight!

Problem	Upper Bound	Lower Bounds			Notes	
		SETH	Max-2-SAT	ETH	Gap-ETH	
CVP_p	$n^{O(n)} (2^{O(n)})$	2^n	$2^{\omega n/3}$	$2^{\Omega(n)}$	$2^{\Omega(n)*}$	"almost all" $p \notin 2\mathbb{Z}$
CVP_2	2^n		$2^{\omega n/3}$	$2^{\Omega(n)}$	$2^{\Omega(n)}*$	
$\text{CVP}_{\infty}/\text{SVP}_{\infty}$	$2^{O(n)}$	2^{n*}		$2^{\Omega(n)}$	$2^{\Omega(n)}*$	
CVPP_p	$n^{O(n)} (2^{O(n)})$		$2^{\Omega(\sqrt{n})}$	$2^{\Omega(\sqrt{n})}$		

Blue = new result.

- (...) = approximation algorithm
 - = hardness for some constant approximation factor

Pros

- We actually proved something!
- It's sort of tight!

<u>Cons</u>

• CVP, not SVP.

Problem	Upper Bound	Lower Bounds			Notes	
		SETH	Max-2-SAT	ETH	Gap-ETH	
CVP_p	$n^{O(n)} (2^{O(n)})$	2^n	$2^{\omega n/3}$	$2^{\Omega(n)}$	$2^{\Omega(n)*}$	"almost all" $p \notin 2\mathbb{Z}$
CVP_2	2^n		$2^{\omega n/3}$	$2^{\Omega(n)}$	$2^{\Omega(n)*}$	
$CVP_{\infty}/SVP_{\infty}$	$2^{O(n)}$	2^{n*}		$2^{\Omega(n)}$	$2^{\Omega(n)*}$	
CVPP_p	$n^{O(n)} (2^{O(n)})$		$2^{\Omega(\sqrt{n})}$	$2^{\Omega(\sqrt{n})}$		

Blue = new result.

- (...) = approximation algorithm
 - = hardness for some constant approximation factor

<u>Pros</u>

- We actually proved something!
- It's sort of tight!

- CVP, not SVP.
- Exact/near-exact CVP only.

Problem	Upper Bound	Lower Bounds			Notes	
		SETH	Max-2-SAT	ETH	Gap-ETH	
CVP_p	$n^{O(n)} (2^{O(n)})$	2^n	$2^{\omega n/3}$	$2^{\Omega(n)}$	$2^{\Omega(n)*}$	"almost all" $p \notin 2\mathbb{Z}$
CVP_2	2^n		$2^{\omega n/3}$	$2^{\Omega(n)}$	$2^{\Omega(n)*}$	
$CVP_{\infty}/SVP_{\infty}$	$2^{O(n)}$	2^{n*}		$2^{\Omega(n)}$	$2^{\Omega(n)*}$	
CVPP_p	$n^{O(n)} (2^{O(n)})$		$2^{\Omega(\sqrt{n})}$	$2^{\Omega(\sqrt{n})}$		

Blue = new result.

- (...) = approximation algorithm
 - = hardness for some constant approximation factor

Pros

- We actually proved something!
- It's sort of tight!

- CVP, not SVP.
- Exact/near-exact CVP only.
- No ℓ_2 .

Problem	Upper Bound	Lower Bounds			Notes	
		SETH	Max-2-SAT	ETH	Gap-ETH	
CVP_p	$n^{O(n)} (2^{O(n)})$	2^n	$2^{\omega n/3}$	$2^{\Omega(n)}$	$2^{\Omega(n)*}$	"almost all" $p \notin 2\mathbb{Z}$
CVP_2	2^n		$2^{\omega n/3}$	$2^{\Omega(n)}$	$2^{\Omega(n)*}$	
$CVP_{\infty}/SVP_{\infty}$	$2^{O(n)}$	2^{n*}		$2^{\Omega(n)}$	$2^{\Omega(n)*}$	
CVPP_p	$n^{O(n)} (2^{O(n)})$		$2^{\Omega(\sqrt{n})}$	$2^{\Omega(\sqrt{n})}$		

Blue = new result.

- (...) = approximation algorithm
 - = hardness for some constant approximation factor

Pros

- We actually proved something!
- It's sort of tight!

- CVP, not SVP.
- Exact/near-exact CVP only.
- No ℓ_2 .
- Very artificial CVP instance.

Problem	Upper Bound	Lower Bounds			Notes	
		SETH	Max-2-SAT	ETH	Gap-ETH	
CVP_p	$n^{O(n)} (2^{O(n)})$	2^n	$2^{\omega n/3}$	$2^{\Omega(n)}$	$2^{\Omega(n)*}$	"almost all" $p \notin 2\mathbb{Z}$
CVP_2	2^n		$2^{\omega n/3}$	$2^{\Omega(n)}$	$2^{\Omega(n)*}$	
$CVP_{\infty}/SVP_{\infty}$	$2^{O(n)}$	2^{n*}		$2^{\Omega(n)}$	$2^{\Omega(n)*}$	
CVPP_p	$n^{O(n)} (2^{O(n)})$		$2^{\Omega(\sqrt{n})}$	$2^{\Omega(\sqrt{n})}$		

Blue = new result.

- (...) = approximation algorithm
 - = hardness for some constant approximation factor

Pros

- We actually proved something!
- It's sort of tight!

- CVP, not SVP.
- Exact/near-exact CVP only.
- No ℓ_2 .
- Very artificial CVP instance.
- $d \gg n$.

Break?

Noah Stephens-Davidowitz

Act 3: What about SVP?

Divesh Aggarwal

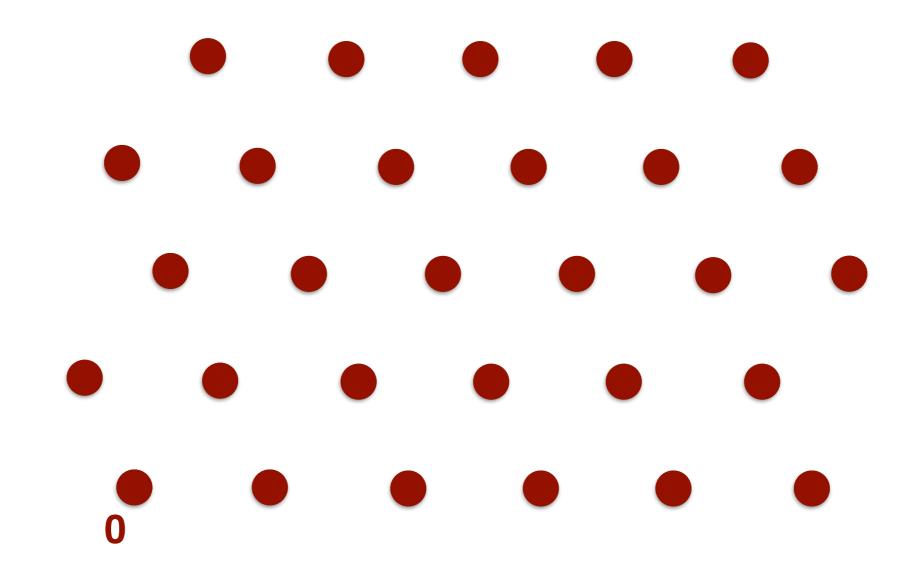
Noah Stephens-Davidowitz

0

Noah Stephens-Davidowitz

$$\lambda_1^{(p)}(\mathcal{L}) := \min_{\mathbf{y} \in \mathcal{L}_{\neq \mathbf{0}}} \|\mathbf{y}\|_p$$

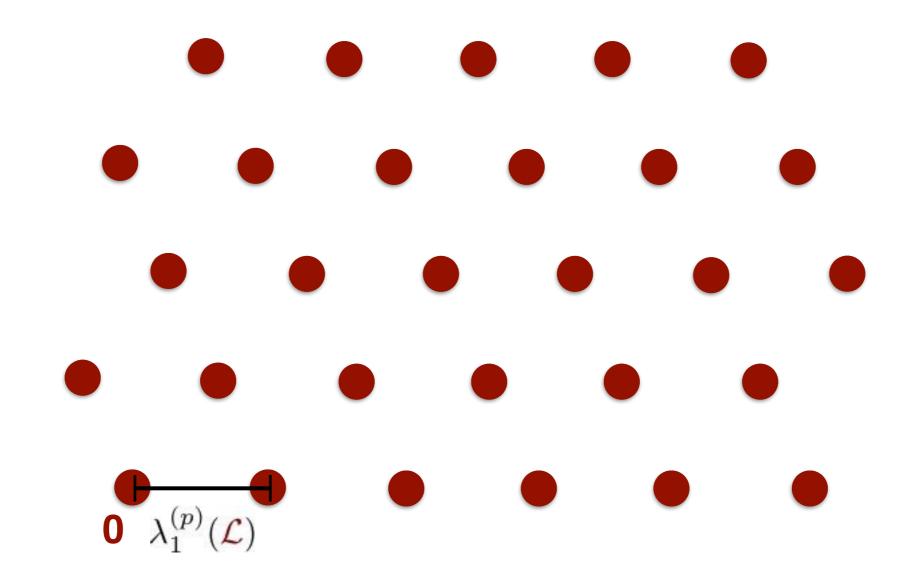
1.1.1



Noah Stephens-Davidowitz

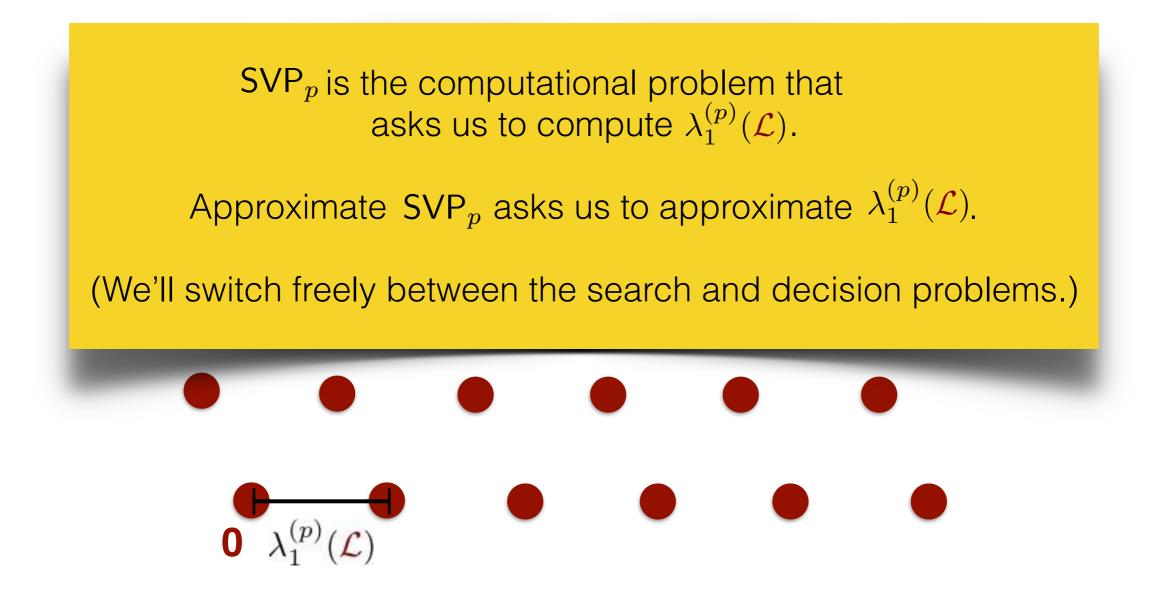
$$\lambda_1^{(p)}(\mathcal{L}) := \min_{\mathbf{y} \in \mathcal{L}_{\neq \mathbf{0}}} \|\mathbf{y}\|_p$$

1.1.1



Noah Stephens-Davidowitz

$$\lambda_1^{(p)}(\mathcal{L}) := \min_{\mathbf{y} \in \mathcal{L}_{\neq \mathbf{0}}} \|\mathbf{y}\|_p$$



Noah Stephens-Davidowitz

SVP Algorithms (it's complicated...)

р		
All	$2^{O(n)}$	[AKS01, BN09, AJ08, DPV11]
2	$2^{n+o(n)}$	[ADR <mark>S</mark> 15, A <mark>S</mark> 18]
2	$2^{n/2 + o(n)}$	2-approx [ADR <mark>S</mark> 15]
2	$n^{O(n)}$ (but fast)	(n=150!) [KT17]
2	$(3/2)^{n/2+o(n)} \approx 2^{0.29n}$	^{<i>v</i>} Heuristic [BDGL15]
œ	$pprox 3^d$	[DM18]
co	$2^{0.62d}$	Heuristic [DM18]

• Van Emde Boaz asked in 1981 whether SVP is NP-hard.

- Van Emde Boaz asked in 1981 whether SVP is NP-hard.
- Answered in 1998 by Ajtai. (Yes.)

- Van Emde Boaz asked in 1981 whether SVP is NP-hard.
- Answered in 1998 by Ajtai. (Yes.)
- NP-hard to approximate to within any constant [CN98, Mic01, Kho05]

- Van Emde Boaz asked in 1981 whether SVP is NP-hard.
- Answered in 1998 by Ajtai. (Yes.)
- NP-hard to approximate to within any constant [CN98, Mic01, Kho05]
- "Hard" to approximate to "near-polynomial" factors [..., HR12]

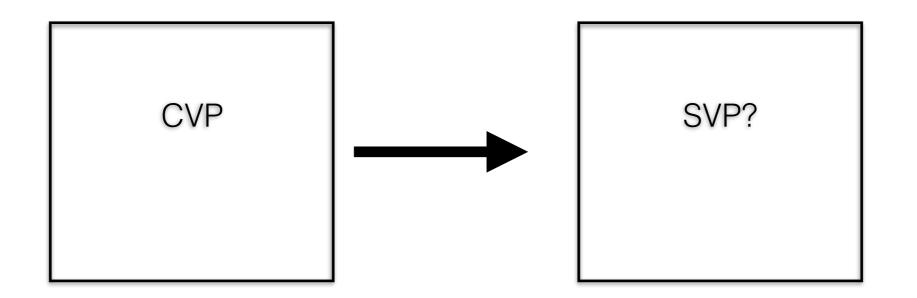
- Van Emde Boaz asked in 1981 whether SVP is NP-hard.
- Answered in 1998 by Ajtai. (Yes.)
- NP-hard to approximate to within any constant [CN98, Mic01, Kho05]
- "Hard" to approximate to "near-polynomial" factors [..., HR12]

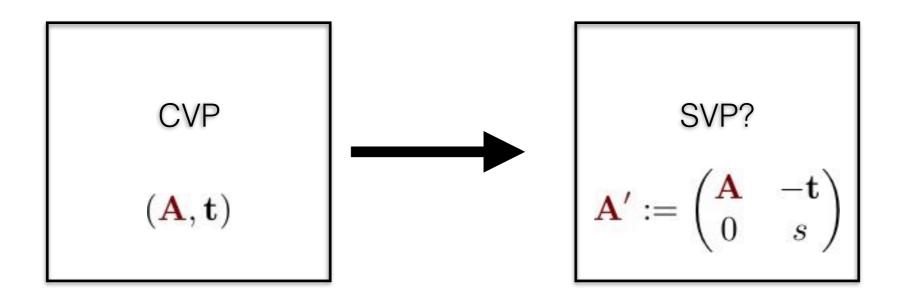
$$- \gamma = n^{c/\log\log n}$$

- Van Emde Boaz asked in 1981 whether SVP is NP-hard.
- Answered in 1998 by Ajtai. (Yes.)
- NP-hard to approximate to within any constant [CN98, Mic01, Kho05]
- "Hard" to approximate to "near-polynomial" factors [..., HR12]

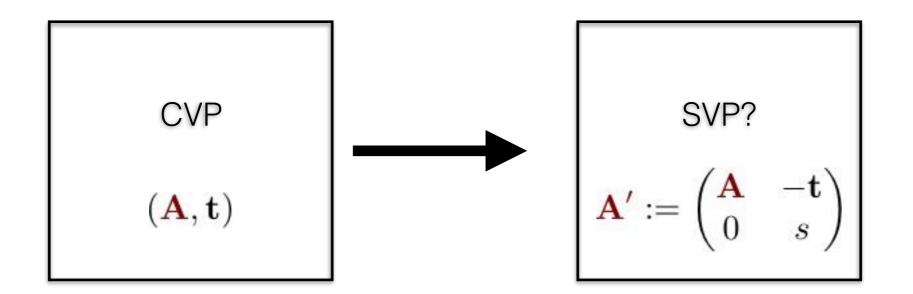
- $\gamma = n^{c/\log\log n}$

• All known reductions are randomized [Mic12]

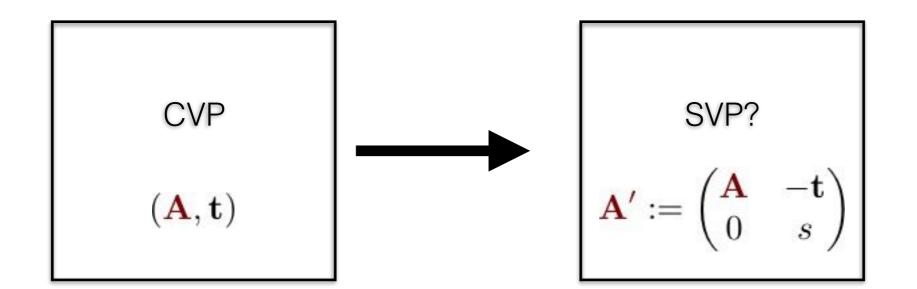




Fine-grained hardness of lattice problems

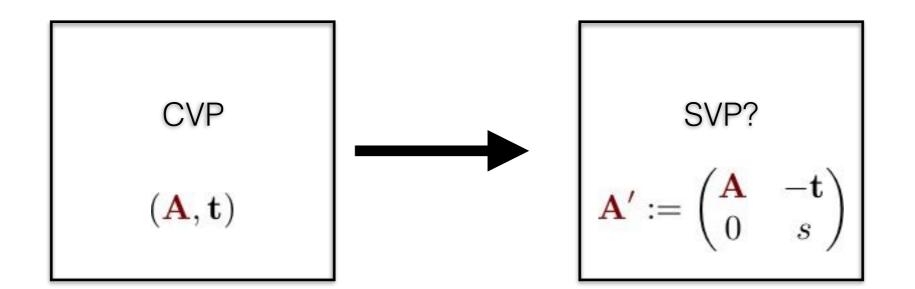


 $\mathcal{L}(\mathbf{A}') = \{ (\mathbf{y} - k\mathbf{t}, ks) : \mathbf{y} \in \mathcal{L}(\mathbf{A}), \ k \in \mathbb{Z} \}$



 $\mathcal{L}(\mathbf{A}') = \{ (\mathbf{y} - k\mathbf{t}, ks) : \mathbf{y} \in \mathcal{L}(\mathbf{A}), k \in \mathbb{Z} \}$

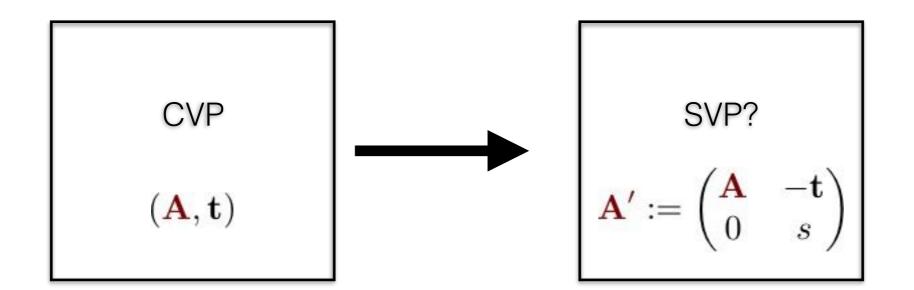
For $\mathbf{y} \in \mathcal{L}(\mathbf{A})$, $(\mathbf{y} - \mathbf{t}, s) \in \mathcal{L}(\mathbf{A}')$ with $\|(\mathbf{y} - \mathbf{t}, s)\|_p^p = s^p + \|\mathbf{y} - \mathbf{t}\|^p$.



 $\mathcal{L}(\mathbf{A}') = \{ (\mathbf{y} - k\mathbf{t}, ks) : \mathbf{y} \in \mathcal{L}(\mathbf{A}), k \in \mathbb{Z} \}$

For $\mathbf{y} \in \mathcal{L}(\mathbf{A})$, $(\mathbf{y} - \mathbf{t}, s) \in \mathcal{L}(\mathbf{A}')$ with $\|(\mathbf{y} - \mathbf{t}, s)\|_p^p = s^p + \|\mathbf{y} - \mathbf{t}\|^p$.

Problem: Short vectors $(\mathbf{y} - k\mathbf{t}, ks) \in \mathcal{L}(\mathbf{A'})$ for $k \neq \pm 1$.



 $\mathcal{L}(\mathbf{A}') = \{ (\mathbf{y} - k\mathbf{t}, ks) : \mathbf{y} \in \mathcal{L}(\mathbf{A}), k \in \mathbb{Z} \}$

For $\mathbf{y} \in \mathcal{L}(\mathbf{A})$, $(\mathbf{y} - \mathbf{t}, s) \in \mathcal{L}(\mathbf{A}')$ with $\|(\mathbf{y} - \mathbf{t}, s)\|_p^p = s^p + \|\mathbf{y} - \mathbf{t}\|^p$.

Problem: Short vectors $(\mathbf{y} - k\mathbf{t}, ks) \in \mathcal{L}(\mathbf{A'})$ for $k \neq \pm 1$.

Really only k = 0 is a problem. I.e., short vectors in $\mathcal{L}(\mathbf{A})$.

$$\mathbf{A}' := \begin{pmatrix} \mathbf{A} & -\mathbf{t} \\ 0 & s \end{pmatrix}$$

Problem: Maybe $\lambda_1^{(p)}(\mathcal{L}(\mathbf{A})) < \operatorname{dist}_p(\mathbf{t}, \mathcal{L}(\mathbf{A})).$

$$\mathbf{A}' := \begin{pmatrix} \mathbf{A} & -\mathbf{t} \\ 0 & s \end{pmatrix}$$

Problem: Maybe $\lambda_1^{(p)}(\mathcal{L}(\mathbf{A})) < \operatorname{dist}_p(\mathbf{t}, \mathcal{L}(\mathbf{A})).$

Ideal solution: Just assume that this doesn't happen.

$$\mathbf{A}' := \begin{pmatrix} \mathbf{A} & -\mathbf{t} \\ 0 & s \end{pmatrix}$$

Problem: Maybe $\lambda_1^{(p)}(\mathcal{L}(\mathbf{A})) < \operatorname{dist}_p(\mathbf{t}, \mathcal{L}(\mathbf{A})).$

Ideal solution: Just assume that this doesn't happen. Real solution: Assume that it doesn't happen "often."

$$\mathbf{A}' := \begin{pmatrix} \mathbf{A} & -\mathbf{t} \\ 0 & s \end{pmatrix}$$

Problem: Maybe $\lambda_1^{(p)}(\mathcal{L}(\mathbf{A})) < \operatorname{dist}_p(\mathbf{t}, \mathcal{L}(\mathbf{A})).$

Ideal solution: Just assume that this doesn't happen. Real solution: Assume that it doesn't happen "often."

 $N_p(\mathcal{L}, r) := |\{\mathbf{y} \in \mathcal{L} : \|\mathbf{y}\|_p \le r\}| \qquad \text{(Number of short vectors.)}$

$$\mathbf{A}' := \begin{pmatrix} \mathbf{A} & -\mathbf{t} \\ 0 & s \end{pmatrix}$$

Problem: Maybe $\lambda_1^{(p)}(\mathcal{L}(\mathbf{A})) < \operatorname{dist}_p(\mathbf{t}, \mathcal{L}(\mathbf{A})).$

Ideal solution: Just assume that this doesn't happen. Real solution: Assume that it doesn't happen "often."

 $N_p(\mathcal{L}, r) := |\{\mathbf{y} \in \mathcal{L} : \|\mathbf{y}\|_p \le r\}| \qquad \text{(Number of short vectors.)}$ $N_p(\mathcal{L}, r; \mathbf{t}) := |\{\mathbf{y} \in \mathcal{L} : \|\mathbf{y} - \mathbf{t}\|_p \le r\}| \quad \text{(Number of close vectors.)}$

Fine-grained hardness of lattice problems

$$\mathbf{A}' := \begin{pmatrix} \mathbf{A} & -\mathbf{t} \\ 0 & s \end{pmatrix}$$

Problem: Maybe $\lambda_1^{(p)}(\mathcal{L}(\mathbf{A})) < \operatorname{dist}_p(\mathbf{t}, \mathcal{L}(\mathbf{A})).$

Ideal solution: Just assume that this doesn't happen. Real solution: Assume that it doesn't happen "often."

 $N_p(\mathcal{L}, r) := |\{\mathbf{y} \in \mathcal{L} : \|\mathbf{y}\|_p \le r\}| \qquad \text{(Number of short vectors.)}$ $N_p(\mathcal{L}, r; \mathbf{t}) := |\{\mathbf{y} \in \mathcal{L} : \|\mathbf{y} - \mathbf{t}\|_p \le r\}| \quad \text{(Number of close vectors.)}$

 $N_p(\mathcal{L}(\mathbf{A}), r) \ll N_p(\mathcal{L}(\mathbf{A}), r; \mathbf{t})$

$$\mathbf{A}' := \begin{pmatrix} \mathbf{A} & -\mathbf{t} \\ 0 & s \end{pmatrix}$$

Problem: Maybe $\lambda_1^{(p)}(\mathcal{L}(\mathbf{A})) < \operatorname{dist}_p(\mathbf{t}, \mathcal{L}(\mathbf{A})).$

Ideal solution: Just assume that this doesn't happen. Real solution: Assume that it doesn't happen "often."

 $N_p(\mathcal{L}, r) := |\{\mathbf{y} \in \mathcal{L} : \|\mathbf{y}\|_p \le r\}| \qquad \text{(Number of short vectors.)}$ $N_p(\mathcal{L}, r; \mathbf{t}) := |\{\mathbf{y} \in \mathcal{L} : \|\mathbf{y} - \mathbf{t}\|_p \le r\}| \quad \text{(Number of close vectors.)}$

 $N_p(\mathcal{L}(\mathbf{A}), r) \ll N_p(\mathcal{L}(\mathbf{A}), r; \mathbf{t})$

"Many more close vectors than short vectors."

Sparsification [Khot05]

$$\mathbf{A}' := \begin{pmatrix} \mathbf{A} & -\mathbf{t} \\ 0 & s \end{pmatrix}$$

"Many more close vectors than short vectors."

Sparsification [Khot05]

$$\mathbf{A}' := \begin{pmatrix} \mathbf{A} & -\mathbf{t} \\ 0 & s \end{pmatrix}$$

"Many more close vectors than short vectors." $\mathcal{L}' := \{ \mathbf{Az} : \mathbf{z} \in \mathbb{Z}^{n+1}, \ x_1 z_1 + \dots + x_{n+1} z_{n+1} \equiv 0 \bmod q \}$

$$\mathbf{A}' := \begin{pmatrix} \mathbf{A} & -\mathbf{t} \\ 0 & s \end{pmatrix}$$

"Many more close vectors than short vectors."

 $\mathcal{L}' := \{ \mathbf{A}\mathbf{z} : \mathbf{z} \in \mathbb{Z}^{n+1}, \ x_1 z_1 + \dots + x_{n+1} z_{n+1} \equiv 0 \mod q \}$ $\mathbf{x} \sim \mathbb{Z}_q^{n+1}$

$$\mathbf{A}' := \begin{pmatrix} \mathbf{A} & -\mathbf{t} \\ 0 & s \end{pmatrix}$$

"Many more close vectors than short vectors."

 $\mathcal{L}' := \{ \mathbf{A}\mathbf{z} : \mathbf{z} \in \mathbb{Z}^{n+1}, \ x_1 z_1 + \dots + x_{n+1} z_{n+1} \equiv 0 \mod q \}$ $\mathbf{x} \sim \mathbb{Z}_q^{n+1}$

 $q \approx N_p(\mathcal{L}(\mathbf{A}), r; \mathbf{t})$

Noah Stephens-Davidowitz

$$\mathbf{A}' := \begin{pmatrix} \mathbf{A} & -\mathbf{t} \\ 0 & s \end{pmatrix}$$

"Many more close vectors than short vectors." $\mathcal{L}' := \{ \mathbf{Az} : \mathbf{z} \in \mathbb{Z}^{n+1}, \ x_1 z_1 + \dots + x_{n+1} z_{n+1} \equiv 0 \mod q \}$ $\mathbf{x} \sim \mathbb{Z}_q^{n+1}$

 $q \approx N_p(\mathcal{L}(\mathbf{A}), r; \mathbf{t})$

Vectors in \mathcal{L}' "look" independent with $\Pr[\mathbf{y} \in \mathcal{L}' \mid \mathbf{y} \in \mathcal{L}(\mathbf{A}')] = 1/q$.

$$\mathbf{A'} := \begin{pmatrix} \mathbf{A} & -\mathbf{t} \\ 0 & s \end{pmatrix}$$

"Many more close vectors than short vectors."

 $\mathcal{L}' := \{ \mathbf{Az} : \mathbf{z} \in \mathbb{Z}^{n+1}, x_1 z_1 + \dots + x_{n+1} z_{n+1} \equiv 0 \mod q \}$

If the initial CVP instance has many more close vectors than short vectors, then the shortest vector in \mathcal{L}' will "correspond to" a close vector with high probability.

 $q \approx N_p(\mathcal{L}(\mathbf{A}), r; \mathbf{t})$

Vectors in \mathcal{L}' "look" independent with $\Pr[\mathbf{y} \in \mathcal{L}' \mid \mathbf{y} \in \mathcal{L}(\mathbf{A}')] = 1/q$.

$$\mathbf{A}' := \begin{pmatrix} \mathbf{A} & -\mathbf{t} \\ 0 & s \end{pmatrix}$$

"Many more close vectors than short vectors."

 $\mathcal{L}' := \{ \mathbf{Az} : \mathbf{z} \in \mathbb{Z}^{n+1}, x_1 z_1 + \dots + x_{n+1} z_{n+1} \equiv 0 \mod q \}$

If the initial CVP instance has many more close vectors than short vectors, then the shortest vector in \mathcal{L}' will "correspond to" a close vector with high probability.

 $q \approx N_p(\mathcal{L}(\mathbf{A}), r; \mathbf{t})$

It suffices to show hardness of CVP with more close vectors than short vectors.

(Note: The resulting lattice looks a lot like the lattices used in cryptography.)

Noah Stephens-Davidowitz

Gadget: $(\mathbf{A}^{\dagger}, \mathbf{t}^{\dagger})$

Gadget: $(\mathbf{A}^{\dagger}, \mathbf{t}^{\dagger})$

$$\widehat{\mathcal{L}} := \mathcal{L} \begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{A}^{\dagger} \end{pmatrix}$$

$$\widehat{\mathbf{t}} := \begin{pmatrix} \mathbf{t} \\ \mathbf{t}^{\dagger} \end{pmatrix}$$

Noah Stephens-Davidowitz

Gadget: $(\mathbf{A}^{\dagger}, \mathbf{t}^{\dagger})$

$$\widehat{\mathcal{L}} := \mathcal{L} \begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{A}^{\dagger} \end{pmatrix} \qquad \qquad \widehat{\mathbf{t}} := \begin{pmatrix} \mathbf{t} \\ \mathbf{t}^{\dagger} \end{pmatrix}$$

 $\widehat{\mathcal{L}} = \{ (\mathbf{y}, \mathbf{y}^{\dagger}) : \mathbf{y} \in \mathcal{L}(\mathbf{A}), \ \mathbf{y}^{\dagger} \in \mathcal{L}(\mathbf{A}^{\dagger}) \}$

Gadget: $(\mathbf{A}^{\dagger}, \mathbf{t}^{\dagger})$

$$\widehat{\mathcal{L}} := \mathcal{L} \begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{A}^{\dagger} \end{pmatrix} \qquad \qquad \widehat{\mathbf{t}} := \begin{pmatrix} \mathbf{t} \\ \mathbf{t}^{\dagger} \end{pmatrix}$$

 $\widehat{\mathcal{L}} = \{ (\mathbf{y}, \mathbf{y}^{\dagger}) : \mathbf{y} \in \mathcal{L}(\mathbf{A}), \ \mathbf{y}^{\dagger} \in \mathcal{L}(\mathbf{A}^{\dagger}) \}$

 $N_p(\widehat{\mathcal{L}}, (r^p + (r^{\dagger})^p)^{1/p}) \approx N_p(\mathcal{L}(\mathbf{A}), r) \cdot N_p(\mathcal{L}(\mathbf{A}^{\dagger}), r^{\dagger})$

Gadget: $(\mathbf{A}^{\dagger}, \mathbf{t}^{\dagger})$

$$\widehat{\mathcal{L}} := \mathcal{L} \begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{A}^{\dagger} \end{pmatrix} \qquad \qquad \widehat{\mathbf{t}} := \begin{pmatrix} \mathbf{t} \\ \mathbf{t}^{\dagger} \end{pmatrix}$$

 $\widehat{\mathcal{L}} = \{ (\mathbf{y}, \mathbf{y}^{\dagger}) : \mathbf{y} \in \mathcal{L}(\mathbf{A}), \ \mathbf{y}^{\dagger} \in \mathcal{L}(\mathbf{A}^{\dagger}) \}$

 $N_p(\widehat{\mathcal{L}}, (r^p + (r^{\dagger})^p)^{1/p}) \approx N_p(\mathcal{L}(\mathbf{A}), r) \cdot N_p(\mathcal{L}(\mathbf{A}^{\dagger}), r^{\dagger})$

 $N_p(\widehat{\mathcal{L}}, (r^p + (r^{\dagger})^p)^{1/p}; \widehat{\mathbf{t}}) \approx N_p(\mathcal{L}(\mathbf{A}), r; \mathbf{t}) \cdot N_p(\mathcal{L}(\mathbf{A}^{\dagger}), r^{\dagger}; \mathbf{t}^{\dagger})$

In order to get "many more close vectors than short vectors", we want

$$\frac{N_p(\mathcal{L}(\mathbf{A}^{\dagger}), r^{\dagger}; \mathbf{t}^{\dagger})}{N_p(\mathcal{L}(\mathbf{A}^{\dagger}), r^{\dagger})} \gg \frac{N_p(\mathcal{L}(\mathbf{A}), r)}{N_p(\mathcal{L}(\mathbf{A}), r; \mathbf{t})} \approx 2^{Cr}$$

(Our hard CVP instance from before is basically just $\mathbf{A} = I_n$ and $\mathbf{t} = (1/2, \dots, 1/2)$.)

 $N_p(\widehat{\mathcal{L}}, (r^p + (r^{\dagger})^p)^{1/p}) \approx N_p(\mathcal{L}(\mathbf{A}), r) \cdot N_p(\mathcal{L}(\mathbf{A}^{\dagger}), r^{\dagger})$

 $N_p(\widehat{\mathcal{L}}, (r^p + (r^{\dagger})^p)^{1/p}; \widehat{\mathbf{t}}) \approx N_p(\mathcal{L}(\mathbf{A}), r; \mathbf{t}) \cdot N_p(\mathcal{L}(\mathbf{A}^{\dagger}), r^{\dagger}; \mathbf{t}^{\dagger})$

In order to get "many more close vectors than short vectors", we want

$$\frac{N_p(\mathcal{L}(\mathbf{A}^{\dagger}), r^{\dagger}; \mathbf{t}^{\dagger})}{N_p(\mathcal{L}(\mathbf{A}^{\dagger}), r^{\dagger})} \gg \frac{N_p(\mathcal{L}(\mathbf{A}), r)}{N_p(\mathcal{L}(\mathbf{A}), r; \mathbf{t})} \approx 2^{Cr}$$

(Our hard CVP instance from before is basically just $\mathbf{A} = I_n$ and $\mathbf{t} = (1/2, \dots, 1/2)$.)

All hardness reductions for SVP use some gadget like this. We show that any such gadget implies hardness.

+ m (1/m)

$$\widehat{\mathcal{L}} := \mathcal{L} \begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{A}^{\dagger} \end{pmatrix}$$

$$\widehat{\mathbf{t}} := \begin{pmatrix} \mathbf{t} \\ \mathbf{t}^{\dagger} \end{pmatrix}$$

Noah Stephens-Davidowitz

$$\widehat{\mathcal{L}} := \mathcal{L} \begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{A}^{\dagger} \end{pmatrix} \qquad \qquad \widehat{\mathbf{t}} := \begin{pmatrix} \mathbf{t} \\ \mathbf{t}^{\dagger} \end{pmatrix}$$
$$\operatorname{rank}(\widehat{\mathcal{L}}) = n + n^{\dagger}$$

 $\widehat{\mathcal{L}} := \mathcal{L} \begin{pmatrix} \mathbf{A} & 0\\ 0 & \mathbf{A}^{\dagger} \end{pmatrix} \qquad \widehat{\mathbf{t}} := \begin{pmatrix} \mathbf{t}\\ \mathbf{t}^{\dagger} \end{pmatrix}$ $\operatorname{rank}(\widehat{\mathcal{L}}) = n + n^{\dagger}$ $\frac{N_p(\mathcal{L}(\mathbf{A}^{\dagger}), r^{\dagger}; \mathbf{t}^{\dagger})}{N_n(\mathcal{L}(\mathbf{A}^{\dagger}), r^{\dagger})} \ge 2^{\Omega(n)}$

Fine-grained hardness of lattice problems

$$\widehat{\mathcal{L}} := \mathcal{L} \begin{pmatrix} \mathbf{A} & 0\\ 0 & \mathbf{A}^{\dagger} \end{pmatrix} \qquad \widehat{\mathbf{t}} := \begin{pmatrix} \mathbf{t}\\ \mathbf{t}^{\dagger} \end{pmatrix}$$
$$\operatorname{rank}(\widehat{\mathcal{L}}) = n + n^{\dagger}$$
$$\frac{N_p(\mathcal{L}(\mathbf{A}^{\dagger}), r^{\dagger}; \mathbf{t}^{\dagger})}{N_p(\mathcal{L}(\mathbf{A}^{\dagger}), r^{\dagger})} \ge 2^{\Omega(n)}$$

To prove $2^{\Omega(n)}$ -hardness, we need $n^{\dagger} = O(n)$. I.e., $\cdot \frac{N_p(\mathcal{L}(\mathbf{A}^{\dagger}), r^{\dagger}; \mathbf{t}^{\dagger})}{N_p(\mathcal{L}(\mathbf{A}^{\dagger}), r^{\dagger})} \ge 2^{\Omega(n^{\dagger})}$

Noah Stephens-Davidowitz

Building the Gadget p > 2.14

$$\frac{N_p(\mathcal{L}^{\dagger}, r^{\dagger}; \mathbf{t}^{\dagger})}{N_p(\mathcal{L}^{\dagger}, r^{\dagger})} \ge 2^{\Omega(n^{\dagger})}$$

Building the Gadget p > 2.14

$$\frac{N_p(\mathcal{L}^{\dagger}, r^{\dagger}; \mathbf{t}^{\dagger})}{N_p(\mathcal{L}^{\dagger}, r^{\dagger})} \ge 2^{\Omega(n^{\dagger})}$$

For $p \gtrsim 2.14$, $\mathcal{L}^{\dagger} := \mathbb{Z}^{n^{\dagger}}$, $\mathbf{t}^{\dagger} := (1/2, \dots, 1/2)$, and $r^{\dagger} := (n^{\dagger})^{1/p}/2$ works!

Building the Gadget p > 2.14

$$\frac{N_p(\mathcal{L}^{\dagger}, r^{\dagger}; \mathbf{t}^{\dagger})}{N_p(\mathcal{L}^{\dagger}, r^{\dagger})} \ge 2^{\Omega(n^{\dagger})}$$

For $p \gtrsim 2.14$, $\mathcal{L}^{\dagger} := \mathbb{Z}^{n^{\dagger}}$, $\mathbf{t}^{\dagger} := (1/2, \dots, 1/2)$, and $r^{\dagger} := (n^{\dagger})^{1/p}/2$ works!

This is a very convenient gadget!

$$r^{\dagger} := \operatorname{dist}_{p}(\mathbf{t}^{\dagger}, \mathcal{L}^{\dagger}) \qquad \widehat{\mathcal{L}} \approx \mathbb{Z}^{n+n^{\dagger}} \quad \widehat{\mathbf{t}} \approx (1/2, \dots, 1/2)$$

Noah Stephens-Davidowitz

Building the Gadget p > 2.14

$$\frac{N_p(\mathcal{L}^{\dagger}, r^{\dagger}; \mathbf{t}^{\dagger})}{N_p(\mathcal{L}^{\dagger}, r^{\dagger})} \ge 2^{\Omega(n^{\dagger})}$$

For $p \gtrsim 2.14$, $\mathcal{L}^{\dagger} := \mathbb{Z}^{n^{\dagger}}$, $\mathbf{t}^{\dagger} := (1/2, \dots, 1/2)$, and $r^{\dagger} := (n^{\dagger})^{1/p}/2$ works!

This is a very convenient gadget!

$$r^{\dagger} := \operatorname{dist}_{p}(\mathbf{t}^{\dagger}, \mathcal{L}^{\dagger}) \quad \widehat{\mathcal{L}} \approx \mathbb{Z}^{n+n^{\dagger}} \quad \widehat{\mathbf{t}} \approx (1/2, \dots, 1/2)$$

We just need to study the number of integer vectors in ℓ_p balls.

Noah Stephens-Davidowitz

Noah Stephens-Davidowitz

$$\Theta_p(\tau) := \sum_{z \in \mathbb{Z}} \exp(-\tau |z|^p)$$

$$\Theta_p(\tau) := \sum_{z \in \mathbb{Z}} \exp(-\tau |z|^p)$$

$$\Theta_p(\tau)^n = \sum_{\mathbf{z} \in \mathbb{Z}^n} \exp(-\tau \|\mathbf{z}\|^p)$$

$$\Theta_p(\tau) := \sum_{z \in \mathbb{Z}} \exp(-\tau |z|^p)$$

$$\Theta_p(\tau)^n = \sum_{\mathbf{z} \in \mathbb{Z}^n} \exp(-\tau \|\mathbf{z}\|^p)$$

 $N_p(\mathbb{Z}^n, r) < \exp(\tau r^p) \cdot \Theta_p(\tau)^n$

$$\Theta_p(\tau) := \sum_{z \in \mathbb{Z}} \exp(-\tau |z|^p)$$

$$\Theta_p(\tau)^n = \sum_{\mathbf{z}\in\mathbb{Z}^n} \exp(-\tau \|\mathbf{z}\|^p)$$

$$N_p(\mathbb{Z}^n, r) < \exp(\tau r^p) \cdot \Theta_p(\tau)^n$$

$$N_p(\mathbb{Z}^n, r) \approx \inf_{\tau > 0} \exp(\tau r^p) \cdot \Theta_p(\tau)^n$$

Noah Stephens-Davidowitz

$$\Theta_p(\tau) := \sum_{z \in \mathbb{Z}} \exp(-\tau |z|^p)$$

$$\Theta_p(\tau)^n = \sum_{\mathbf{z} \in \mathbb{Z}^n} \exp(-\tau \|\mathbf{z}\|^p)$$

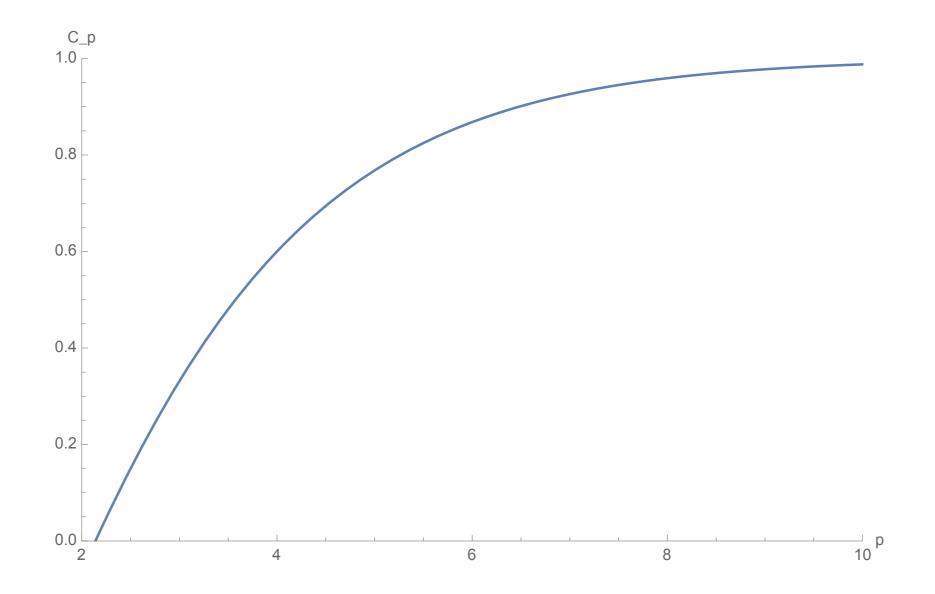
$$N_p(\mathbb{Z}^n, r) < \exp(\tau r^p) \cdot \Theta_p(\tau)^n$$

$$N_p(\mathbb{Z}^n, r) \approx \inf_{\tau > 0} \exp(\tau r^p) \cdot \Theta_p(\tau)^n$$

Technique due to [Mazo, Odlyzko 90] and [EOR91].

Noah Stephens-Davidowitz

No $2^{C_p n}$ -time algorithm for SVP_p unless SETH fails. (For "almost all" $p \gtrsim 2.14$.)



Fine-grained hardness of lattice problems

 $\mathcal{L}^{\dagger} := \mathbb{Z}^{n^{\dagger}} \qquad \mathbf{t}^{\dagger} := (t^{\dagger}, \dots, t^{\dagger}) \qquad r^{\dagger} = \Theta(n^{1/p})$

$$\mathcal{L}^{\dagger} := \mathbb{Z}^{n^{\dagger}} \qquad \mathbf{t}^{\dagger} := (t^{\dagger}, \dots, t^{\dagger}) \qquad r^{\dagger} = \Theta(n^{1/p})$$

(To analyze this, we study $\Theta_p(\tau; t^{\dagger}) := \sum_{z \in \mathbb{Z}} e^{-\tau |z - t^{\dagger}|^p}$.)

$$\mathcal{L}^{\dagger} := \mathbb{Z}^{n^{\dagger}} \qquad \mathbf{t}^{\dagger} := (t^{\dagger}, \dots, t^{\dagger}) \qquad r^{\dagger} = \Theta(n^{1/p})$$

(To analyze this, we study $\Theta_p(\tau; t^{\dagger}) := \sum_{z \in \mathbb{Z}} e^{-\tau |z - t^{\dagger}|^p}$.)

 $2^{\Omega(n)}$ -hardness assuming no $2^{o(n)}$ -time algorithm for Gap-2-SAT.

$$\mathcal{L}^{\dagger} := \mathbb{Z}^{n^{\dagger}} \qquad \mathbf{t}^{\dagger} := (t^{\dagger}, \dots, t^{\dagger}) \qquad r^{\dagger} = \Theta(n^{1/p})$$

(To analyze this, we study $\Theta_p(\tau; t^{\dagger}) := \sum_{z \in \mathbb{Z}} e^{-\tau |z - t^{\dagger}|^p}$.)

 $2^{\Omega(n)}$ -hardness assuming no $2^{o(n)}$ -time algorithm for Gap-2-SAT.

Because $r^{\dagger} > \operatorname{dist}(\mathbf{t}^{\dagger}, \mathcal{L}^{\dagger})$, we need to reduce from approx-CVP, so we get weaker hardness.

$$\mathcal{L}^{\dagger} := \mathbb{Z}^{n^{\dagger}} \qquad \mathbf{t}^{\dagger} := (t^{\dagger}, \dots, t^{\dagger}) \qquad r^{\dagger} = \Theta(n^{1/p})$$

(To analyze this, we study $\Theta_p(\tau; t^{\dagger}) := \sum_{z \in \mathbb{Z}} e^{-\tau |z - t^{\dagger}|^p}$.)

 $2^{\Omega(n)}$ -hardness assuming no $2^{o(n)}$ -time algorithm for Gap-2-SAT.

Because $r^{\dagger} > \operatorname{dist}(\mathbf{t}^{\dagger}, \mathcal{L}^{\dagger})$, we need to reduce from approx-CVP, so we get weaker hardness.

(The integer lattice can't work for $p \leq 2$.)

Noah Stephens-Davidowitz

What about p = 2?!

$$\frac{N_p(\mathcal{L}^{\dagger}, r^{\dagger}; \mathbf{t}^{\dagger})}{N_p(\mathcal{L}^{\dagger}, r^{\dagger})} \ge 2^{\Omega(n^{\dagger})}$$

What about p = 2?!

$$\frac{N_p(\mathcal{L}^{\dagger}, r^{\dagger}; \mathbf{t}^{\dagger})}{N_p(\mathcal{L}^{\dagger}, r^{\dagger})} \ge 2^{\Omega(n^{\dagger})}$$

• Implies hardness for p < 2 [Regev, Rosen '06].

$$\frac{N_p(\mathcal{L}^{\dagger}, r^{\dagger}; \mathbf{t}^{\dagger})}{N_p(\mathcal{L}^{\dagger}, r^{\dagger})} \ge 2^{\Omega(n^{\dagger})}$$

- Implies hardness for p < 2 [Regev, Rosen '06].
- Certain (reasonable?) geometric conjectures yield such a gadget.

$$\frac{N_p(\mathcal{L}^{\dagger}, r^{\dagger}; \mathbf{t}^{\dagger})}{N_p(\mathcal{L}^{\dagger}, r^{\dagger})} \ge 2^{\Omega(n^{\dagger})}$$

- Implies hardness for p < 2 [Regev, Rosen '06].
- Certain (reasonable?) geometric conjectures yield such a gadget.
- Most natural: lattice with exponential kissing number.

$$\frac{N_p(\mathcal{L}^{\dagger}, r^{\dagger}; \mathbf{t}^{\dagger})}{N_p(\mathcal{L}^{\dagger}, r^{\dagger})} \ge 2^{\Omega(n^{\dagger})}$$

- Implies hardness for p < 2 [Regev, Rosen '06].
- Certain (reasonable?) geometric conjectures yield such a gadget.
- Most natural: lattice with exponential kissing number. I.e., $N_2(\mathcal{L}^{\dagger}, \lambda_1^{(2)}(\mathcal{L}^{\dagger})) \ge 2^{\Omega(n^{\dagger})}$

$$\frac{N_p(\mathcal{L}^{\dagger}, r^{\dagger}; \mathbf{t}^{\dagger})}{N_p(\mathcal{L}^{\dagger}, r^{\dagger})} \ge 2^{\Omega(n^{\dagger})}$$

- Implies hardness for p < 2 [Regev, Rosen '06].
- Certain (reasonable?) geometric conjectures yield such a gadget.
- Most natural: lattice with exponential kissing number. I.e., $N_2(\mathcal{L}^{\dagger}, \lambda_1^{(2)}(\mathcal{L}^{\dagger})) \geq 2^{\Omega(n^{\dagger})}$

 - (Just take $r^{\dagger} = (1 \varepsilon)\lambda_1^{(2)}(\mathcal{L}), \mathbf{t}^{\dagger} \approx \mathbf{0}$.)

$$\frac{N_p(\mathcal{L}^{\dagger}, r^{\dagger}; \mathbf{t}^{\dagger})}{N_p(\mathcal{L}^{\dagger}, r^{\dagger})} \ge 2^{\Omega(n^{\dagger})}$$

- Implies hardness for p < 2 [Regev, Rosen '06].
- Certain (reasonable?) geometric conjectures yield such a gadget.
- Most natural: lattice with exponential kissing number. I.e., $N_2(\mathcal{L}^{\dagger}, \lambda_1^{(2)}(\mathcal{L}^{\dagger})) \ge 2^{\Omega(n^{\dagger})}$

 - (Just take $r^{\dagger} = (1 \varepsilon)\lambda_1^{(2)}(\mathcal{L}), \mathbf{t}^{\dagger} \approx \mathbf{0}$) -
 - Seems hard, so we give weaker conditions that also suffice.

$$\frac{N_p(\mathcal{L}^{\dagger}, r^{\dagger}; \mathbf{t}^{\dagger})}{N_p(\mathcal{L}^{\dagger}, r^{\dagger})} \ge 2^{\Omega(n^{\dagger})}$$

- Implies hardness for p < 2 [Regev, Rosen '06].
- Certain (reasonable?) geometric conjectures yield such a gadget.
- Most natural: lattice with exponential kissing number. I.e., $N_2(\mathcal{L}^{\dagger}, \lambda_1^{(2)}(\mathcal{L}^{\dagger})) \ge 2^{\Omega(n^{\dagger})}$

 - (Just take $r^{\dagger} = (1 \varepsilon)\lambda_1^{(2)}(\mathcal{L}), \mathbf{t}^{\dagger} \approx \mathbf{0}$.) _
 - Seems hard, so we give weaker conditions that also suffice. —
 - Proven by Serge Vlăduț in February!! —

 SVP_2 is $2^{\Omega(n)}$ -hard unless GapETH fails!

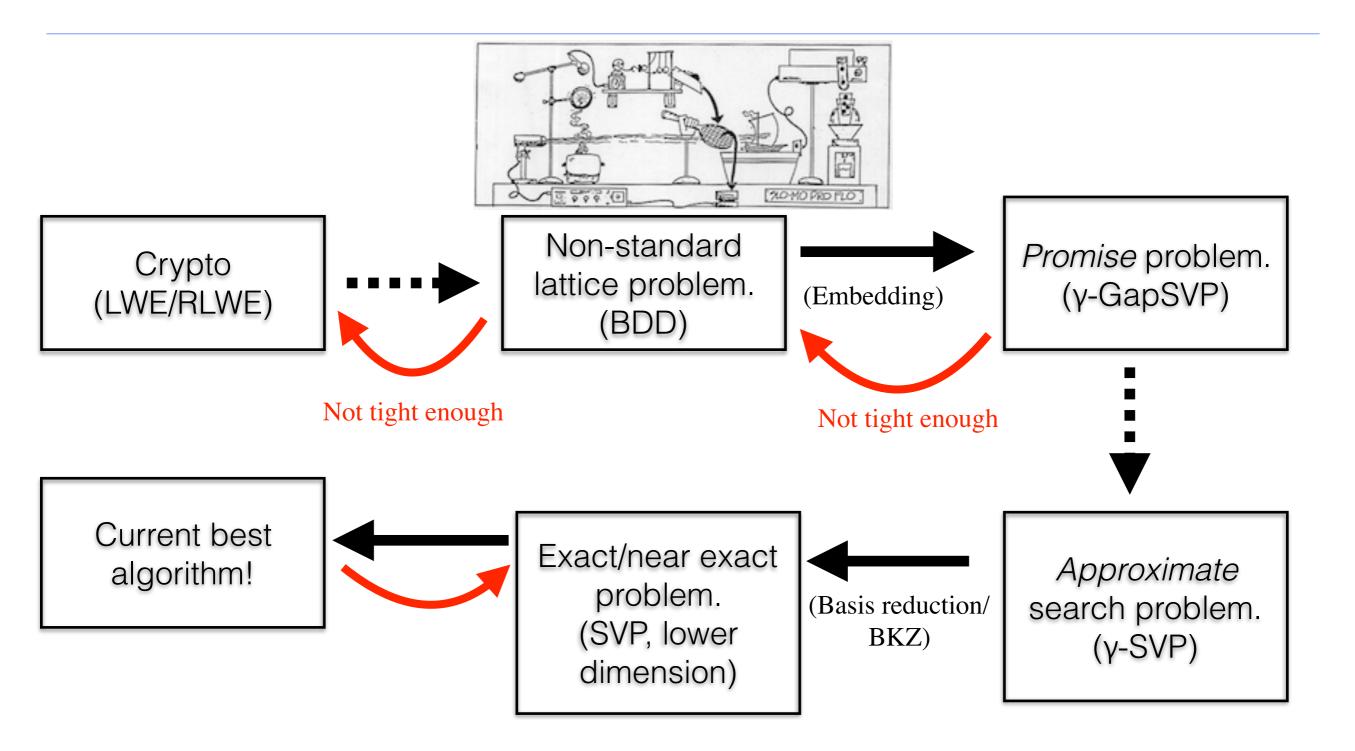
- Implies hardness for p < 2 [Regev, Rosen '06].
- Certain (reasonable?) geometric conjectures yield such a gadget.
- Most natural: lattice with exponential kissing number. I.e., $N_2(\mathcal{L}^{\dagger}, \lambda_1^{(2)}(\mathcal{L}^{\dagger})) \ge 2^{\Omega(n^{\dagger})}$

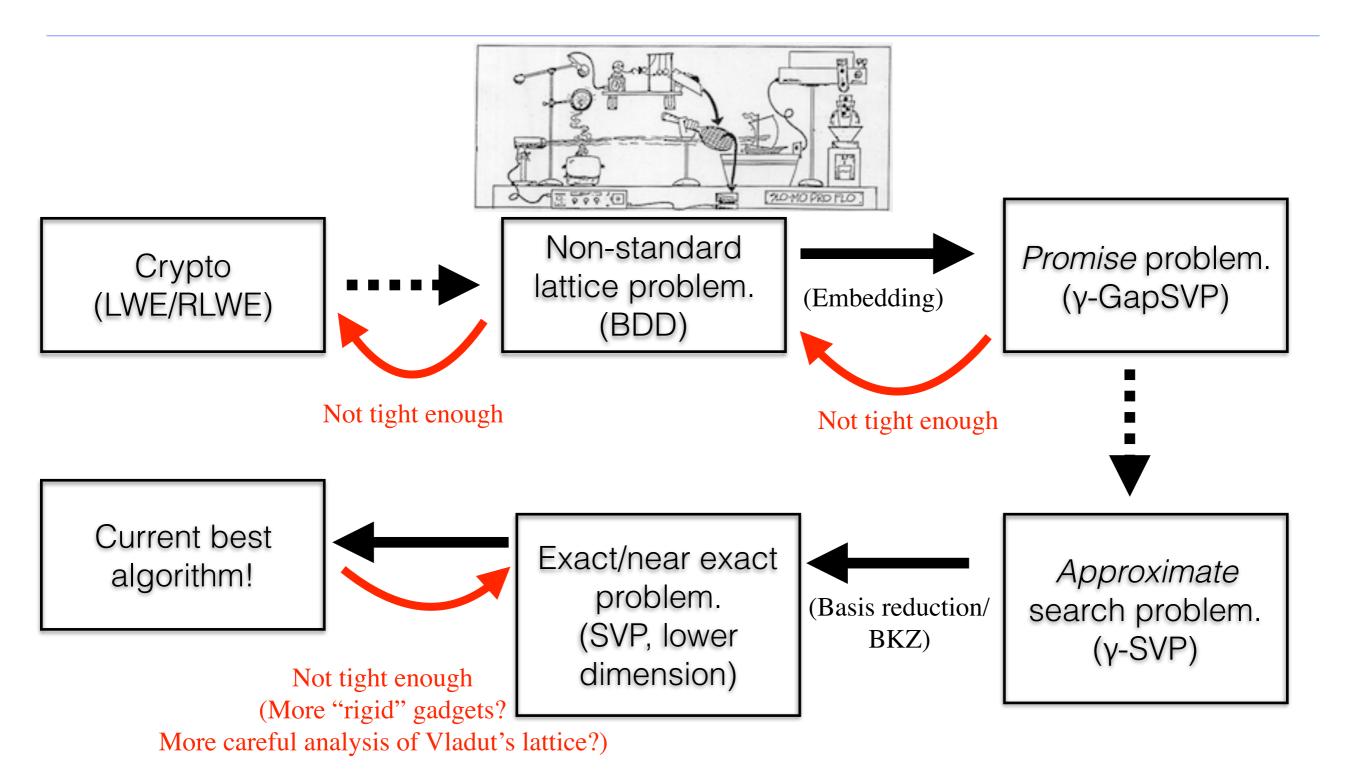
 - (Just take $r^{\dagger} = (1 \varepsilon)\lambda_1^{(2)}(\mathcal{L}), \mathbf{t}^{\dagger} \approx \mathbf{0}$.) _
 - Seems hard, so we give weaker conditions that also suffice. —
 - Proven by Serge Vlăduț in February!! —

Summary

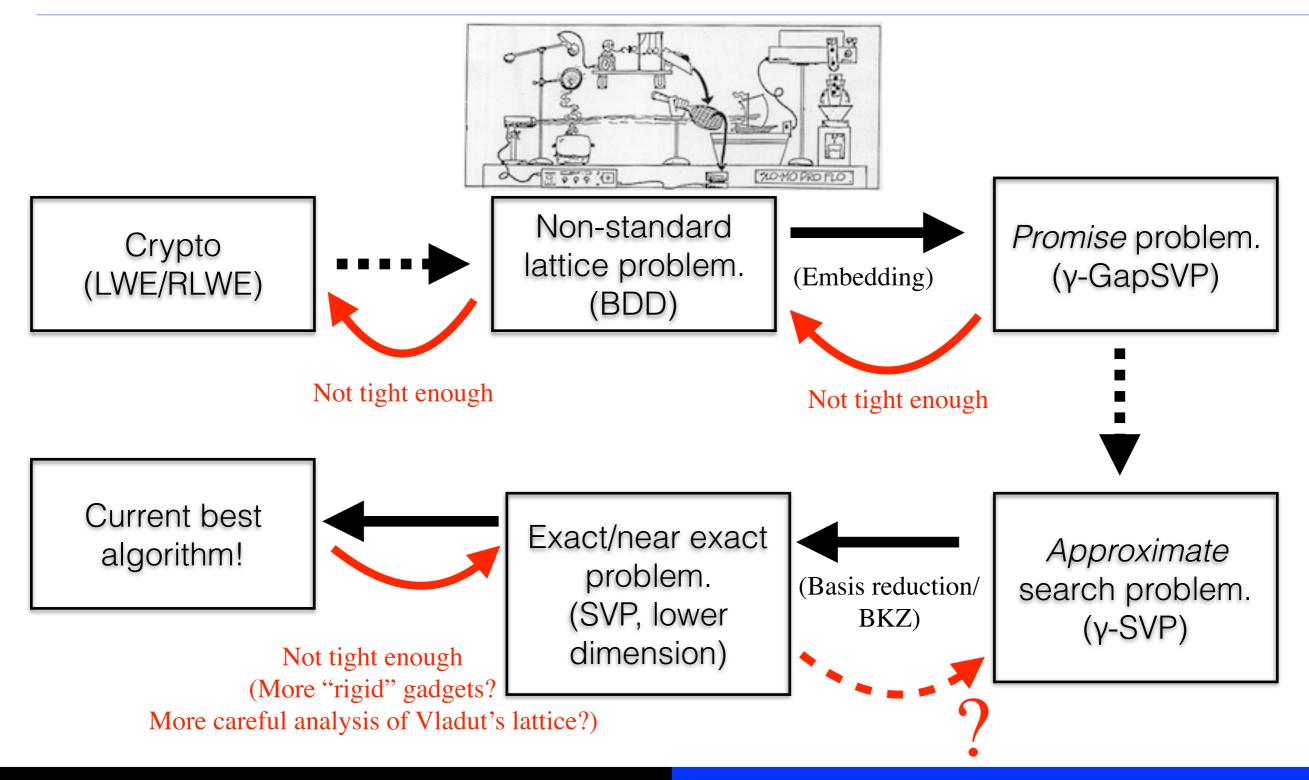
	Upper Bound	Lower Bounds		Notes
		SETH	Gap-ETH	
p_0	$2^{O(n)}$	$2^{C_p n}$	$2^{\Omega(n)*}$	$p_0 \approx 2.14.$
2	$2^{O(n)}$	-	$2^{\Omega(n)*}$	
$1 \le p < 2$	$2^{O(n)}$	-	$2^{\Omega(n)*}$	
p = 2	$2^n (2^{0.29n})$	-	$2^{\Omega(n)*}$	Upper bounds from [ADRS15, BDGL15]
$p = \infty$	$3^{d}(2^{0.62d})$	$2^{n}*$	$2^{\Omega(n)}*$	Upper bounds from [AM18].
<pre>Blue = new result. () = heuristic algorithm * = hardness for some constant approximation factor</pre>				2



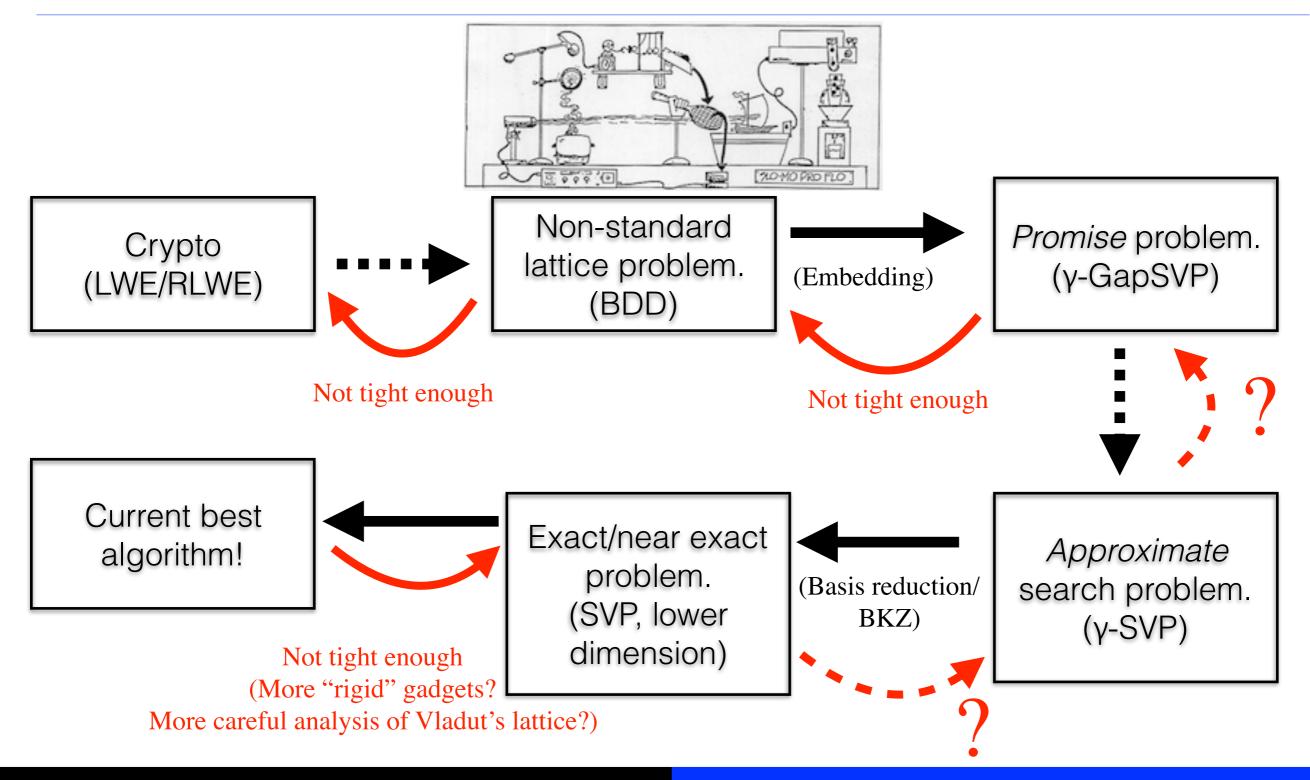




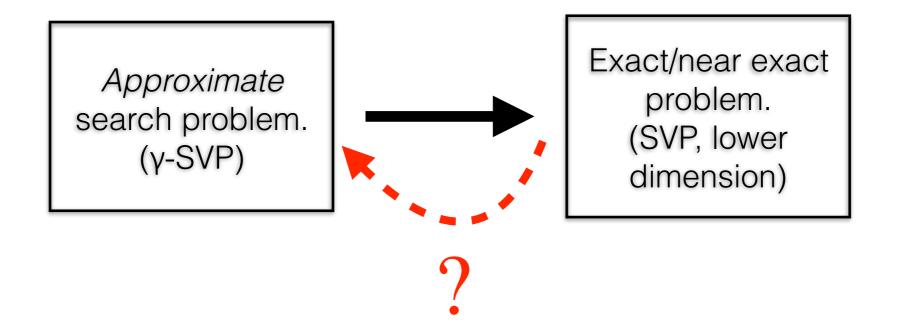
Noah Stephens-Davidowitz

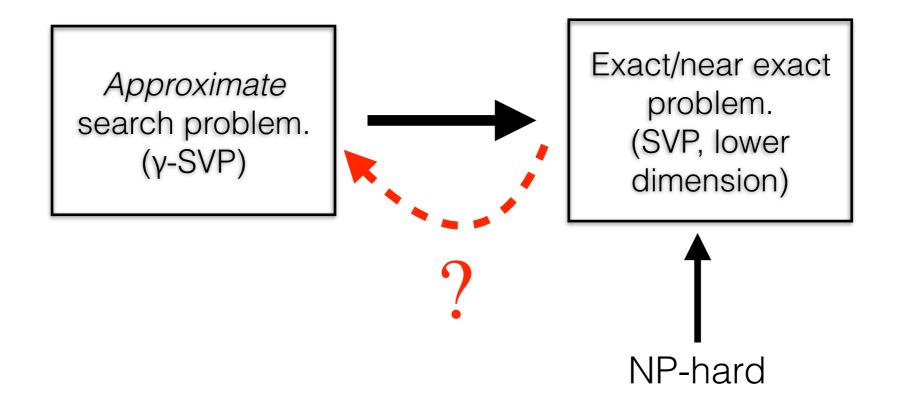


Noah Stephens-Davidowitz

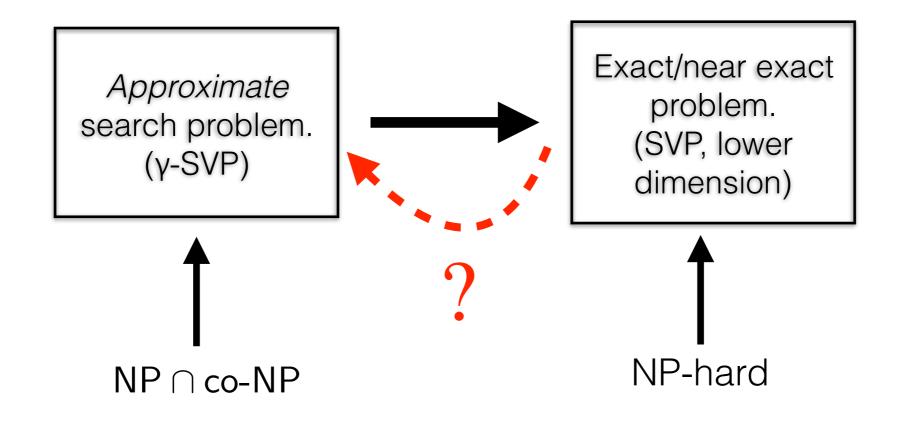


Noah Stephens-Davidowitz





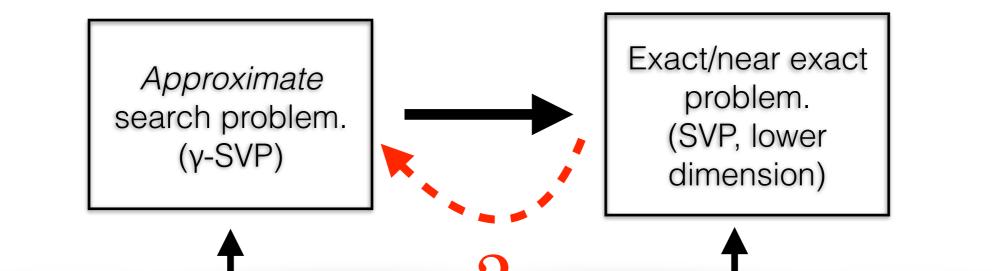




Any reduction in the other direction has to be "interesting."

Superpolynomial? Non-deterministic? Non-uniform?

Noah Stephens-Davidowitz



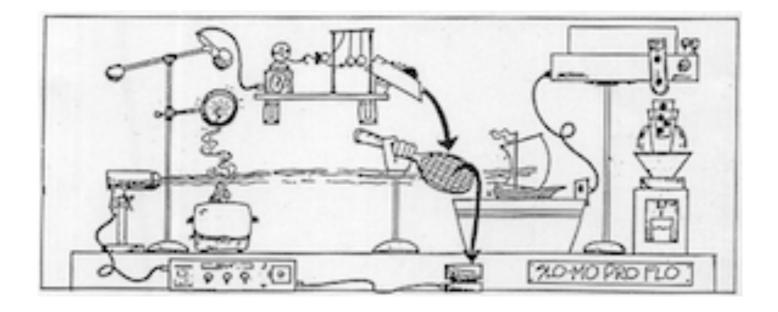
Maybe BKZ is fundamentally the wrong approach for approximate lattice problems?

Any reduction in the other direction has to be "interesting."

Superpolynomial? Non-deterministic? Non-uniform?

Noah Stephens-Davidowitz

Thanks!



Noah Stephens-Davidowitz