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Game Plan

 Motivation
- How secure 1s lattice-based crypto?
-  How sure are we?

e Summary of results
* Fine-grained hardness of CVP
* Fine-grained hardness of SVP

* Where do we go from here?
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Quantitative Security Claims

___WE's(ngs) | Othes | NisTscategory

(n=576,q =8192,s = 3) | = KeylLen = 128  AES-128, SHA3-256
(n=704,q = 8192,s = 3) l = KeylLen = 192  AES-192, SHA3-384
(n =832,q =8192,s = 3) l = KeyLen = 256  AES-256
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Quantitative Security Is
Hard...

RSA Number Decimal digits Binary digits Cash prize offered Factored on Factored by

RSA-100 100 330 USS1,.000' Apcil 1, 199115 Arjon K. Lenstra

RSA-110 110 364 USS4 426'¢ Apnil 14, 1962 Arjon K, Lenstra and M.S. Manasse
RSA-120 120 397 $5.808¢ July 9, 1963 I. Donny ot al

RSA129 1 129 426 $100 USD April 26, 1994 Arjon K. Lenstra of al

RSA130 130 430 UsSsi14.527° Apcil 10, 1966 Arjon K, Lenstra of al

RSA-140 140 463 USS17.226 February 2, 1599 Horman 1o Riolo ot a

RSA150 150 456 Apnil 16, 2004 Kazumaro Aokl ot al

RSA-155 155 512 $6.383° August 22, 1999 Horman to Riolo ot a

RSA-180 160 530 Apail 1, 2003 Jons Franke ot al., University of Bonn
RSA70 T 170 563 December 26, 2009 D. Bonenberger and M. Krone I

RSA-576 174 576 $10,000 USD December 3, 2003 Jons Franke ot al., Universtty of Bonn

RSA180 T 180 o6 May 8, 2010 S. A. Danilov and |. A. Popovyan, Moscow State Univorsity'”
RSA-180 1 190 629 November 8, 2010 A. Timoleev and |. A. Popavyan

RSA-840 193 640 $20,000 USD November 2, 2005 Jons Franke ot al., University of Bonn

RSA-200117 200 663 May 9, 2005 Jons Franke of al., Universey of BSonn
RSA-2107 210 556 September 26, 2013%  Ryan Propper

RSA-T04 212 7 $30,000 USD July 2, 2012 Shi Bai, Emmanuel Thomé and Paul Zmmermann

HRSA-220 220 729 May 13, 2016 S. Bal, P. Gaudry, A. Kruppa, E. Thomé and P. Zimmermann
HSA-230 230 I Vs
HRSA- 282 232 S58

RSA-768 7 232 768 $80,000 USD December 12, 2009 Thorsten Kleinjung et al.
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Quantitative Security |s
Hard

RSA Number Decimal digits Binary digits Cash prize offered Factored on Factored by
RSA-100 100 330 USS1,000¢ Apcil 1, 199115 Arjen K. Lenstra

RSA-110 110 364 USS4 426'¢ Apnil 14, 1992° Arjen K, Lenstra and M.S. Manasse
RSA-120 120 397 $5.808¢ July 9, 196" T. Donny ot al

RSA 129 1 129 4726 $100 USD Apcil 26, 1994° Arjon K, Lenstra ot al

RSA.130 13N A1N 11C€14 so7s Ansl 10 10068 rinn ¥ | anatrn of nl

e Qriginal recommended RSA key size...

RSAI50

RSA-180 160 530 April 1, 2003 Jons Franke of al., Universey of Bonn

RSA70 T 170 HE3 December 26, 2008  D. Bonenberger ana M. Krone I

RSA576 174 576 $10,000 USD December 3, 2003 Jons Franke of al., University of Bonn

RSA-180 1 180 556 May 8, 2010 S. A. Daniiov and 1. A. Popovyan, Moscow State University'’
RSA-180 T 190 629 November 8, 2010 A Timofeev and |. A. Popavyan

RSA-640 193 640 $20,000 USD November 2, 2005 Jons Franke ot al., University of Bonn

RSA-200117 200 863 May 9, 2008 Jons Franke et al., University of Bonn

RSA-2107 210 556 September 26, 2013%  Ryan Propper

RSA-704 I 212 704 $30,000 USD July 2, 2012 Shi Bai, Emmanuel Thomé and Paul Zmmermann
RSA-220 220 729 May 13, 2016 S. Bal, P. Gaudry, A. Kruppa, E. Thomé and P. Zimmermann
RSA-230 230 762

RSA-232 232 68

RSA-788 7 232 768 $80,000 USD December 12,2009  Thorsten Kleinjung et a
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Quantitative Security |s
Hard.

RSA Number Decimal digits Binary digits Cash prize offered Factored on Factored by

RSA-100 100 330 USS1.000¢ Apnil 1, 199115 Arjon K, Lenstra
RSA110 110 364 USS4. 426'¢ Apnl 14 1952 Anen K, Lenstra and M.S. Manasse
RSA-120 120 397 $5.808° July 9, 196G I. Denny ot al
RSA129 1 129 426 $100 USD April 26, 1994 Arjon K, Lenstra ot al
HRSAIZD 1 ATN C€14 so7s Ansl 10 109068 rinn ¥ | anatrn of ol
Rari o Orlglnal recommended RSA key size
H E R
RSA-150 1
RSA170 T 170 HE3 December 26, 2009 D. Bonenberger and M. Krone I

e We want our current schemes to be secure in >40 years—
ASA-150 I preferably forever.

”
e iy s
CA MM

(RSA’s original parameters were broken after ~25 years.)

ISA-220 729 May 13, 2016 S. Bal, P. Gaudry, A. Kruppa, E. Thomé and P Zimmermann
RSA-230 230 re2
HRSA-232 232 58

RSA-768 1 232 768 $80.000 USD December 12. 2008 Thorsten Kleinjung et al.
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Security of Lattice-Based Crypto
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Security of Lattice-Based Crypto
(a caricature)

i
| 1 v ““LL—; Approximate
Crypto T —— deClS/é)n pSr)c\)/kEDIem.
(LWE) worst-case lattice _’ (y-GapSVP)
e mE problem. . é
A ~ ZZXm * (BDD) (Embedding) As~0
s there s € Z" ) A s (A b) .
As ~ b mod ¢? As ~ 0 r v
Exact search Approximate
X
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Security of Lattice-Based Crypto
(a caricature)

To determine how secure your crypto scheme is, simply assume that
our current best method for each of these steps is nearly optimal.  —

rypto P
(LWE) | (y-GapSVP)
n As ; 0
A~ 75"
Is there s € \We rely on assumptions because we don’t know how to ™
As ~ b mc prove such strong statements. \ 4
But maybe we can prove something’? oximate
Lattice algori problem

(Sievingy
enumeration

\t mn/BKZ
Flna S ?g Ohthat = Find S 7é 0 that

y-minimizes || As]|.

minimizes || As]|.
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Security of Lattice-Based
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* Big loss in parameters.

T Doesn’t apply for many practical schemes.

—
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Security of Lattice-Based
Crypto

Quantitative security estimates are (all”?) based on the assumption that
the fastest algorithm for exact/near exact SVP runs in time (4/3)™/2

(Based on a sieving heuristic of [Nguyen, Vidick 08].)

( We want to prove something like this.

verage-case™ .
[Reg03, Pei09, LPR10, BLPRS13, PRS17]) [Pe109, LMO9]* -

Exact/near exact

Current Dest | «m— iy +—— Approximate

. (Basis reduction/ | search problem.
algorithm! SN |  (SVP lower BKZ) (y-SpVP)
dimension)
(This talk*§ 19| @¥) ‘7
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Results
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* Lower bound of 2"*°(") time for CVP in “almost all” £, norms, not including p = 2 .

2%4(n) for all p, even for approximate CVP.
- Compare with the 2" °(™) _time algorithm for p = 2.
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Results
(Spoilers)

* Lower bound of 2n+o(n) time for CVP in “almost all” ¢, norms, not including p = 2 .
2%4(n) for all p, even for approximate CVP.
- Compare with the 2" °(™) _time algorithm for p = 2.

e Lower bound of 2¢*" time for SVP in “almost all” £, norms with p = 2.14 .

e Lower bound of 29(") for SVP for all p.
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e Lower bound of 29(") for SVP for all p.
- (This result 1s meant to surprise you later...)
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Results
(Spoilers)

* Lower bound of 2n+o(n) time for CVP in “almost all” ¢, norms, not including p = 2 .
2§X(n) for all p, even for approximate CVP.
- Compare with the 2" °(™) _time algorithm for p = 2.

e Lower bound of 2¢*" time for SVP in “almost all” £, norms with p = 2.14 .

e Lower bound of 29(") for SVP for all p.
- (This result 1s meant to surprise you later...)

- Compare with the (4/ 3)”/ 2 heuristic lower bound.
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Act 2.
Fine-Grained Hardness of CVP

lllll

Huck Alexandr
Bennett Golovnev
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e [ is a discrete set of vectors in R<.

* Specified by a basis by, ..., b, linearly independent vectors
e L={a1by+---+a,b, | a; € Z}
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| attices

» [ is a discrete set of vectors in R<.
e Specified by a basis by,...,b,, linearly independent vectors
e L={a1by+---+a,b, | a; € Z}

e n is the rank of the lattice, and d is the ambient dimension.
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The Closest Vector Problem

dists (6, L) = —t
15 p( ) = 1)’,116121 |y Hp

[x[lp := (|1 [P + - - + |zal”) /P
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The Closest Vector Problem

dists (6, L) = —t
15 p( ) = ;Ilenﬁl |y Hp

[x[lp := (|1 [P + - - + |zal”) /P

CVP,, is the computational problem that
asks us to compute dist, (t, £).
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The Closest Vector Problem

dist,(t, £) := —t
isty(t, £) = I}}gglly v

[x[lp := (|1 [P + - - + |zal”) /P

CVP,, is the computational problem that
asks us to compute dist, (t, £).

—
®
O ot © - O O

Approximate CV P, asks us to approximate dist, (t, £)
(We'll mostly talk about the exact problem...)

- © ¢ v o=
0
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The Closest Vector Problem

e CVP3 canbe solved in time 2" MV 10, ADS15].
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e CVP: can be solved in time 2"7°" [MV10, ADS15]. |
e CVP, can be solved in time n“™ and approximated in time 29 forall 1 <p < oc
[AKSO02, BNO9, Dadush 12].
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e CVP: can be solved in time 2"7°" [MV10, ADS15].
e CVP, can be solved in time n“™ and approximated in time 29 forall 1 <p < oc
[AKSO02, BNO9, Dadush 12].
« CVP,is NP-hard for all 1 < p < o0 [van Emde Boaz ’81].
e Even hard to approximate up to n/ 1°gloe” [ABSS93, DKRS03].
e “The hardest lattice problem.”
- (In practice seems much harder than SVP)
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e CVP3 canbe solved in time 2"7°"™) [MV10, ADS15].
e CVP, can be solved in time n“™ and approximated in time 29 forall 1 <p < oc
[AKSO2, BNO9, Dadush 12].
e CVP,is NP-hard for all 1 < p < o¢ [van Emde Boaz ’81].
e Even hard to approximate up to n/ 1°gloe” [ABSS93, DKRS03].
e “The hardest lattice problem.”
- (In practice seems much harder than SVP)
- Hardness proofs for lattice problems (like SVP) typically go through CVP.
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The Closest Vector Problem

e CVP: can be solved in time 2"7°" [MV10, ADS15].
e CVP, can be solved in time n“™ and approximated in time 29 forall 1 <p < oc
[AKSO02, BNO9, Dadush 12].
e CVP,is NP-hard forall 1 < p < o0 [van Emde Boaz *81].
e Even hard to approximate up to n/ 1°gloe” [ABSS93, DKRS03].
e “The hardest lattice problem.”
- (In practice seems much harder than SVP)
- Hardness proofs for lattice problems (like SVP) typically go through CVP.

Real-world cryptographic applications require quantitative/fine-
grained hardness.

Maybe there’s a 2v™ -time algorithm for CVP? Even a 2/20-time
would break crypto in practice.

We’'ll show something close to 2"-time hardness of CVP.
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The Closest Vector Problem

CVP32 can be solved in time 277" MV 10, ADS135].
CVER o

AK _ | |
ETVI Before this work, only fine-grained hardness result known was a

2£2(n) _time lower bound [folklore, Yeom15].

I\
VAN
A

Ever
“The

- Wacglce seems much harder than SVP) ——

- Hardness proofs for lattice problems (like SVP) typically go through CVP.

Real-world cryptographic applications require quantitative/fine-
grained hardness.

Maybe there’s a 2v™ -time algorithm for CVP? Even a 2/20-time
would break crypto in practice.

We’'ll show something close to 2"-time hardness of CVP.
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The Strong Exponential Time Hypothesis
(SETH)
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The Strong Exponential Time Hypothesis
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K-SAT:
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The Strong Exponential Time Hypothesis
(SETH)

K-SAT:

§ fo— \ 3 _— — ' — \ ' \
(\Z)Z‘] V7 V.-V .’1372) A\ (CC'“);; VZV -V CE42) A (_175 V7 V-V T112)
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The Strong Exponential Time Hypothesis
(SETH)

K-SAT:

§ fo— \ 3 _— — ' — \ ' \
(\Z)Z‘] V7 V.-V .’1372) A\ (CC'“);; VZV -V CE42) A (_175 V7 V-V T112)

k literals per clause
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The Strong Exponential Time Hypothesis
(SETH)

K-SAT:

§ fo— \ 3 _— — ' — \ ' \
(\Z)Z‘] V7 V.-V .’1372) A\ (CC'“);; VZV -V CE42) A (_175 V7 V-V T112)

k literals per clause

n variables, m clauses

Noah Stephens-Davidowitz Fine-grained hardness of lattice problems



The Strong Exponential Time Hypothesis
(SETH)

K-SAT:

§ fo— 0y o 3 e —— N ' S ) \ ' \
(\QZ‘] V7 V.-V .’)372) A\ (CC'H);; VZV -V 51342) A (175 V7 V-V T112)

k literals per clause

n variables, m clauses

Conjecture (SETH, IPP99). There exists a constant integer k such that no
algorithm can solve k-SAT in 2999 time.
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The Strong Exponential Time Hypothesis
(SETH)

K-SAT:

§ fo— \ 3 _— — ' — \ ' \
(\Z)Z‘] V7 V.-V .’1372) A\ (CC'“);; VZV -V CE42) A (_175 V7 V-V T112)

k literals per clause

n variables, m clauses

Conjecture (SETH, IPP99). There exists a constant integer k such that no
algorithm can solve k-SAT in 2999 time.

We want to show a reduction from k-SAT on n variables
to CVP on a lattice of rank n.

I ————
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(a very special case...)
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(x1 Vx2) A (1 Va3) A(ToV T3)
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2-SAT
(a very special case...)

(x1 Vx2) A (1 Va3) A(ToV T3)

@ 1= [

2P
| 201,
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2-SAT
(a very special case...)

(x1 Vx2) A (1 Va3) A(ToV T3)

2P 5
. — tm
2ce], ti=
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2-SAT
(a very special case...)

o ¢ R™X"
2P
B =
2cud ti=
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2-SAT
(a very special case...)

o ¢ R™X"
2P
B =
2cud ti=
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@ 1= [

2-SAT
(a very special case...)

For any z € Z",
£ ) y 3
201,z — a||h, = aPn

if and only if z € {0. 1}™.

201,72 — «

Otherwise,

> ol (n+ 2).
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r
- { 1=

Fine-grained hardness of lattice problems



2-SAT
(a very special case...)

@ = [Rne For any z € Z",
201,z — a||h, = aPn
2P if and only if z € {0. 1}™.

201,72 — «

Otherwise, D > al(n42).

We can assume that z € {0, 1}"!

e
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2-SAT
(a very special case...)
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2-SAT
(a very special case...)

1 =z, appears in clause i
¢; ;= —1 =, appears in clausc i
0 otherwise
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2-SAT
(a very special case...)

1 =z, appears in clause i
¢; ;= —1 =, appears in clausc i
0 otherwise
z € {0,1}"
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2-SAT
(a very special case...)

1 z; appears in clause 1
¢; ;= —1 =, appears in clausc i
0 otherwise
z € {0,1}"

¢,z = (# positive literals satisfied) — (# of negated literals not satisfied)
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2-SAT
(a very special case...)

1 z; appears in clause 1 o , ,
- , . t; := 3 — 2. (# of negated literals in clause 1)
¢; ;= —1 =, appears in clausc i
0 otherwise
z c {0,1}"

¢,z = (# positive literals satisfied) — (# of negated literals not satisfied)

Noah Stephens-Davidowitz Fine-grained hardness of lattice problems



2-SAT
(a very special case...)

1 z; appears in clause 1 o , ,
- , . t; := 3 — 2. (# of negated literals in clause 1)
¢; ;= —1 =, appears in clausc i
0 otherwise
z c {0,1}"

¢,z = (# positive literals satisfied) — (# of negated literals not satisfied)

20,z — t; = 2(# satisfied literals) — 3
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2-SAT
(a very special case...)

1 z; appears in clause 1 o , ,
- , . t; := 3 — 2. (# of negated literals in clause 1)
®;, . =< —1 7T appecars in clause i ’
J J
0 otherwise
z € {0,1}"

¢,z = (# positive literals satisfied) — (# of negated literals not satisfied)

20,z — t; = 2(# satisfied literals) — 3

( . . .
o 1 4th clause is satisfied
|2<b7;z — t.;;l = A

3  otherwise
\
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2-SAT
(a very special case...)

1 z; appears in clause 1 . , ,
- , . t; := 3 — 2. (# of negated literals in clause 1)
®; . =< —1 7. appecars in clause i ’
J J
0 otherwise
z € {0,1}"

®,z = (# positive literals satisfied) — (# of negated literals not satisfied)

20,z — t; = 2(# satisfied literals) — 3

( . . .

— L ith clause is satisfied
'2(1)7'2 — t.;;l = 3 ‘ .
3 otherwise

[Pz — t||L = (# satistied clauses) + 3¥(# unsatisfied clauses)

= 3Pm — (3P — 1)(# satisfied clauses)
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2-SAT
(a very special case...)

1 _’:J E dist, (t, L) tells us exactly ) clause 4)
b;;=4-1 T;é the maximal number of satisfied clauses. So, this
0 othi reduction works for Max-2-SAT.

| Max-2-SAT is hard! |
G,z = (# po tisfied)
———

20,z — t, = 2(# satisfied literals) — 3

(

— L ith clause is satisfied
|2<_b7;z — t.;;l =9 .
3 otherwise

\

[Pz — t||L = (# satistied clauses) + 3¥(# unsatisfied clauses)

= 3Pm — (3P — 1)(# satisfied clauses)
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2-SAT
(a very special case...)

: & dist, (t, L) tells us exactly | clause )
b;;=4-1 T;é the maximal number of satisfied clauses. So, this '
0 ot hi reduction works for Max-2-SAT.
| Max-2-SAT is hard! |
G,z = (# po tisfied)

20, fied
| P2z — t||F = (# satisfied clauses)
= 3Em ses)
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What did we just prove”

e Max-2-SAT is “ETH-hard.” .., assuming SETH (or just ETH), there is no 2°'"/-
time algorithm for Max-2-SAT.
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e Max-2-SAT is “ETH-hard.” I.e., assuming SETH (or just ETH), there is no 27'"’-
time algorithm for Max-2-SAT. |
- Assuming SETH (or just ETH), there is no 2°'"/-time algorithm for CVP.
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time algorithm for Max-2-SAT.
- Assuming SETH (or just ETH), there is no 2°'™/)-time algorithm for CVP.
- (Result already known 1n folklore, and unpublished work [Yeom135].)
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What did we just prove”

e Max-2-SAT is “ETH-hard.” I.e., assuming SETH (or just ETH), there is no 27'"’-
time algorithm for Max-2-SAT. |
- Assuming SETH (or just ETH), there is no 2°'"/-time algorithm for CVP.

- (Result already known in folklore, and unpublished work [Yeom15].)
e Fastest algorithm for Max-2-SAT runs in time own/3 ~ 90781 ryil05].
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e Max-2-SAT is “ETH-hard.” I.e., assuming SETH (or just ETH), there is no 2°'"/-
time algorithm for Max-2-SAT.
- Assuming SETH (or just ETH), there is no 2°'™/)-time algorithm for CVP.
- (Result already known 1n folklore, and unpublished work [Yeom135].)
e Fastest algorithm for Max-2-SAT runs in time own/3 ~ 90781 ryil05].
- Assuming this is optimal, then there is no 2°-78”-time algorithm for CVP,, for

any p.
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What did we just prove”

e Max-2-SAT is “ETH-hard.” I.e., assuming SETH (or just ETH), there is no 2°'"/-
time algorithm for Max-2-SAT.
- Assuming SETH (or just ETH), there is no 2°'™/)-time algorithm for CVP.
- (Result already known 1n folklore, and unpublished work [Yeom135].)
e Fastest algorithm for Max-2-SAT runs in time own/3 ~ 90781 ryil05].
- Assuming this is optimal, then there is no 2°-78”-time algorithm for CVP,, for

any p.
- (Compare to 2+°(")_time algorithm for CVP5.)
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What did we just prove”

e Max-2-SAT is “ETH-hard.” I.e., assuming SETH (or just ETH), there is no 2°'"/-
time algorithm for Max-2-SAT.
- Assuming SETH (or just ETH), there is no 2°'™/)-time algorithm for CVP.
- (Result already known 1n folklore, and unpublished work [Yeom135].)
* Fastest algorithm for Max-2-SAT runs in time own/3 ~ 90781 ryil05].
- | Assuming this is optimall, then there is no 2°-78"-time algorithm for CVP,, for

any p.
- (Compare to 27°")_time algorithm for CVP>))
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What did we just prove”

e Max-2-SAT is “ETH-hard.” I.e., assuming SETH (or just ETH), there is no 2°'"/-
time algorithm for Max-2-SAT.
- Assuming SETH (or just ETH), there is no 2°'™/)-time algorithm for CVP.
- (Result already known 1n folklore, and unpublished work [Yeom135].)
* Fastest algorithm for Max-2-SAT runs in time own/3 ~ 90781 ryil05].
- | Assuming this is optimall, then there is no 2°-78"-time algorithm for CVP,, for

any p.
- (Compdre to 2+°(")_time algorithm for CVP5.)

Not a very safe assumption...
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20,z — t; = 2(# satisfied literals) — 3
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e A 2-SAT clause is satisfied if and only if the number of satisfied literals 1s 1 or 2.
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Generalization to k-SAT?
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e A 2-SAT clause is satisfied if and only if the number of satisfied literals 1s 1 or 2.
* Theretore |2,z — t;| — 1 1f and only if the clause 1s satisfied.
- 2 and 4 are equidistant from 3!
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Generalization to k-SAT?

20,z — t; = 2(# satisfied literals) — 3

e A 2-SAT clause is satisfied if and only if the number of satisfied literals 1s 1 or 2.

* Theretore |2,z — t;| — 1 1f and only if the clause 1s satisfied.
- 2 and 4 are equidistant from 3!

e A 3-SAT clause i1s satisfied if and only if the number of satisfied literals 1s 1, 2, or 3.
- If we try the same construction with 3-SAT, we’ll fail.
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Generalization to k-SAT?

20,z — t; = 2(# satisfied literals) — 3

e A 2-SAT clause is satisfied if and only if the number of satisfied literals 1s 1 or 2.
* Theretore |2,z — t;| — 1 1f and only if the clause 1s satisfied.
- 2 and 4 are equidistant from 3!
e A 3-SAT clause i1s satisfied if and only if the number of satisfied literals 1s 1, 2, or 3.
- If we try the same construction with 3-SAT, we’ll fail.
- We can’t find 3 distinct numbers that are equidistant from some other
number...
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Generalization to k-SAT?
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Generalization to k-SAT?

We can’t find many distinct numbers that are equidistant from some
other number...
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Generalization to k-SAT?

We can’t find many distinct numbers that are equidistant from some
other number...

But, we can find many distinct vectors that are equidistant from some other vector
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Generalization to k-SAT?

We can’t find many distinct numbers that are equidistant from some
other number...

But, we can find many distinct vectors that are equidistant from some other vector

4

1 x; appears in clause i

¢; ;=< —1 T, appears in clausc i

0 otherwise
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Generalization to k-SAT?

We can’t find many distinct numbers that are equidistant from some
other number...

But, we can find many distinct vectors that are equidistant from some other vector
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Generalization to k-SAT?

We can’t find many distinct numbers that are equidistant from some
other number...

But, we can find many distinct vectors that are equidistant from some other vector

Vi if 2; is the £th literal in clause ¢

®; ;=< —vy it T; is the fth literal in clause ¢

0 otherwise

\
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Generalization to k-SAT?

We can’t find many distinct numbers that are equidistant from some
other number...

But, we can find many distinct vectors that are equidistant from some other vector

Vi if 2; is the £th literal in clause ¢

®; ;=< —vy it T; is the fth literal in clause ¢

0 otherwise

\

t; == 3 — 2. (# of negated literals in clause 1)
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Generalization to k-SAT?

We can’t find many distinct numbers that are equidistant from some
other number...

But, we can find many distinct vectors that are equidistant from some other vector

¢

\'g if 2; is the £th literal in clause ¢

g =« —vp if T, is the fth literal in clause 7

0 otherwise

\
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Generalization to k-SAT?

We can’t find many distinct numbers that are equidistant from some
other number...

But, we can find many distinct vectors that are equidistant from some other vector

Vi if 2; is the £th literal in clause ¢

g =« —vp if T, is the fth literal in clause 7

0 otherwise

\

t; 1= t* — > v

fth literal negated
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Generalization to k-SAT?

We can’t find many distinct numbers that are equidistant from some
other number...

But, we can find many distinct vectors that are equidistant from some other vector

Vi if 2; is the £th literal in clause ¢

g =« —vp if T, is the fth literal in clause 7

0 otherwise

\

t; 1= t* — > v

fth literal negated

For z € {0,1}", ®;z —t; = Z vy —t"

z satisfies Zth literal
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Generalization to k-SAT

Noah Stephens-Davidowitz Fine-grained hardness of lattice problems



Generalization to k-SAT

For z € {0, 1}”3 (I)'E.Z —t; = Z Vy — t*

z satisfies Zth literal
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Generalization to k-SAT

For z € {O, 1}77’3 (I)'E.Z —t; = Z Vy — t*

z satisfies Zth literal

We want the norm of this vector to be constant
and smaller than the norm of t* whenever the
sum Is non-empty.
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Generalization to k-SAT

For z € {0, 1}77’3 (I),g_Z —t; = Z Vy — t*

z satisfies Zth literal

We want the norm of this vector to be constant
and smaller than the norm of t* whenever the
sum Is non-empty.

Goal: Find V = (vq,...,vg) € R™*% and t* € R™ such that

for all non-zero y € {0,1}%, |[Vy — t*||, = 1, but |[t*|, > 1.
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|solating Parallelepipeds

Goal: Find V = (vq,...,vi) € R™** and t* € R™ such that

for all non-zcro y € {0,1}%, [|[Vy — t*||, = 1, but ||[t*|, > 1.
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|solating Parallelepipeds

Goal: Find V = (vq,...,vi) € R™** and t* € R™ such that

for all non-zcro y € {0,1}%, [|[Vy — t*||, = 1, but ||[t*|, > 1.

Vi + Vo

Vi
0 Vo
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|solating Parallelepipeds

Goal: Find V = (vq,...,vi) € R™** and t* € R™ such that
for all non-zcro y € {0,1}%, [|[Vy — t*||, = 1, but ||[t*|, > 1.

V] + V2

i

Parallelep|ped
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|solating Parallelepipeds

Goal: Find V = (vq,...,vi) € R™** and t* € R™ such that

for all non-zcro y € {0,1}%, [|[Vy — t*||, = 1, but ||[t*|, > 1.

() \'
Parallelepiped
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for all non-zcro y € {0,1}%, [|[Vy — t*||, = 1, but ||[t*|, > 1.

Do these things even exist for large k”

e “Most of the time,” they do!
 For odd integers p, they exist for all k.
- If SETH holds, then for all odd integers p, there is no 2V-#9"-time
algorithm for CVP,!!!
- (Try p=1 yourself.)
e For even integers p, they exist if and only if £ < p.
- Two 1s an even integer :(.
* For any fixed k, they exist for all but finitely many values of p.
e Forany k and any p(n) = po + d(n) with §(n) # 0 and §(n) — 0, they exist
for sufficiently large n.
- If SETH holds, then no 2"-*" -time algorithm solves CVP,, for such p!!!
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for all non-zcro y € {0,1}%, |[Vy — t*||, = 1, but [|t*||, > 1.

1 1 \ Y1ty2+ys

1
a1 1 1 -1 Y1+ Y2 — Y3
a1 1 —1 1 Y1 — Y2 + Y3
V = arl —1 1 1 | Y11+ Y2+ Y3
1 -1 -1
—1 1 -1
—1 -1 1
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|solating Parallelepipeds

Goal: Find V = (vq,...,vi) € R™** and t* € R™ such that

for all non-zcro y € {0,1}%, |[Vy — t*||, = 1, but [|t*||, > 1.

af 1 1 1\ wty2tys / apt* )
ay 1 1 -1 Y1+ Y2 —Ys aqt”
o5 1 —1 1 Y1 — Y2 + Y3 aqt”
v -1 1 1 |=%+ty2+ys e | oat’
(2 I -1 -1 Y1 — Y2 — Y3 uot™
ag| —1 1 —1 |—vy1+Yy2—ys3 aeat”
azl —1 —1 1 |—Yy1—Y2+ Y3 ot”™
(Y3 \ -1 -1 -1 ) —Y1 — Y2 — Y3 \ st™ )
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|solating Parallelepipeds

Gf‘o/ 1 1 1 \ /cxzot* \\

o1 1 1 —1 at™

1 1 —1 1 apt™
oy q 1 1 o aqt™
V= 9 1 -1 -1 b= ot™
as| —1 1 -1 at”

as| —1 —1 1 ot™

(X3 \—1 —1 -1 / \ argt” /
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|solating Parallelepipeds

(_}50/ 1 1 1 \ /(_rot* \

1 1 1 —1 o t™
vq 1 —1 1 aqt™
o 1 1 1 . at”
v e 1 -1 -1 s ot™
as| —1 1 -1 ot™
as| —1 -1 1 ot™
az\ —1 —1 -1 / \ ast” /
1 p
VI 1 |-t =|alP|2—-t*P
0
p
+ |1 |P - (|2 = t7|P + 2|t7|P)
FlaalP - (| — 2 — £*[7 + 2J¢*|P)
+laglP | =2 — [P
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|solating Parallelepipeds

of 11 1) [ oot \

This is linear in the |a;|A

V =

So, it suffices to find ¢* such that the resulting system of
inear equations in the |«;|? has a (non-negative) solution.

| P
VI 1 |-t =|alP|2—-t*P
0
P

Flaal?- (|2 — £ + 21 P)
+ |ag|P - (| — 2 = t*|P 4+ 2|t*|P)
+ |ag|P - | =2 —t*|P
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|solating Parallelepipeds

|(X()|p 1+ ¢

|a1|p 1
Want to solve M (t") - . =

l(){klp 1
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|solating Parallelepipeds

ao|P 1+¢
o [P 1
Want to solve M (t") - -
o |? 1
e M(t") is stochastic. L.e., if we set a9 = a1 = - -+ = «, then the distances

will all be the same.
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Want to solve M (t") - . =
'()ék’p 1
e M(t") 1s stochastic. I.e., if we set ag = a1 = - - = «, then the distances

will all be the same.
e Therefore, it suffices to find ¢t* such that M (t*)is non-singular.
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- Piecewise polynomial in +* when p 1s an integer.
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e M(t") 1s stochastic. L.e., if we set ag = a1 = --- = «, then the distances

will all be the same.
e Therefore, it suffices to find t* such that M (t*)is non-singular.
o Entries in M (¢*) look like 2_ @b =",

- Piecewise polynomial in ¢* when p is an integer.
- det(M(t*)) is a piecewise polynomial in ™ .
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|solating Parallelepipeds

|Q0|p 1+ ¢
|0 |P 1
Want to solve M (t") - . =
‘()ék‘p 1
e M(t") 1s stochastic. L.e., if we set ag = a1 = --- = «, then the distances

will all be the same.
e Therefore, it suffices to find t* such that M (t*)is non-singular.
o Entries in M (¢*) look like 2_ @b =",
- Piecewise polynomial in ¢* when p is an integer.
- det(M(t*)) 1s a piecewise polynomial in ¢* .

- We show that 1t 1s not always the zero polynomial when p 1s odd.
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Also, Approximate CVP

Max-2-SAT reduction = hardness of (1 + ¢)-approx CVP,, for all p.
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Also, Approximate CVP

Max-2-SAT reduction = hardness of (1 + ¢)-approx CVP,, for all p.
Formally GapETH hardness.

No 2°(")_time for approx Max-2-SAT = No 2°(")-time for approx CVP.
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Summary of Results

Problem Upper Bound Lower Bounds Notes
SETH | Max-2-SAT | ETH | Gap-ETH
CVP, nOm) (20()) 2" 2¢n/3 2:(n) 282(n) * “almost all” p ¢ 27Z
CVP, 2m _— wn/3 99(n) 9%2(n) %
CVP,,/SVP 90(n) onk - 9%}(n) 90(n) %
CVPP,, nOM) (20(n)) - 92(y/m) 9(y/7) o

Blue = new result.
(...) = approximation algorithm
* = hardness for some constant approximation factor
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Summary of Results

Problem Upper Bound Lower Bounds Notes
SETH | Max-2-SAT | ETH | Gap-ETH
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Blue = new result.
(...) = approximation algorithm

* = hardness for some constant approximation factor
Pros Cons
 We actually proved something! e CVP, not SVP.
e It’s sort of tight! * Exact/near-exact CVP only.
e No / 2.

e Very artificial CVP instance.
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Summary of Results

Problem Upper Bound Lower Bounds Notes
SETH | Max-2-SAT | ETH | Gap-ETH
CVPy n®n) (20(n) 2" wn/3 2¢4(n) 28}(n)* “almost all” p ¢ 27Z
CVP, on - 2wn/3 QQ(n) QQ(n)*
CVP/SVP 20(n) N * . 99(n) 90(n)*
CVPP, nOm (20m) | 92(v/n) 9Q(v/n) -

Blue = new result.
(...) = approximation algorithm

* = hardness for some constant approximation factor
Pros Cons
 We actually proved something! e CVP, not SVP.
e It’s sort of tight! * Exact/near-exact CVP only.
e No /5.
e Very artificial CVP instance.
e d>>n.
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Break”?
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Act 3:
What about SVP?

Divesh Aggarwal

National University
of Singapore

Centre for
Quantum
Technologies
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The Shortest Vector Problem
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The Shortest Vector Problem

AP (£) .= min ’
P(c) = min |yl
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The Shortest Vector Problem

AP (£) .= min 5
P(c) = min |y,

SVP, is the computational problem that
asks us to compute AP (£).

Approximate SVP, asks us to approximate WEE)

(We'll switch freely between the search and decision problems.)
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SVP Algorithms
(It's complicated...)

9O0(n) [AKS01, BNO9, AJO8, DPV11]
ono(n) [ADRS15, AS18]
on/2+o(n) 2-approx [ADRS15]
n® (but fast) (n=150!) [KT17]

(3/2)"/20(m) ~ 2029 Lo ristic [BDGL15]

~ 34 [DM18

90.62d Heuristic [DM18]
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Hardness of SVP
(Iit's hard...)
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Hardness of SVP
(it's hard...)

e Van Emde Boaz asked in 1981 whether SVP 1s NP-hard.
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Hardness of SVP
(Iit's hard...)

 Van Emde Boaz asked in 1981 whether SVP 1s NP-hard.
 Answered in 1998 by Ajtai. (Yes.)
 NP-hard to approximate to within any constant [CN98, MicO1, KhoO35]

e “Hard” to approximate to “near-polynomial” factors [..., HR12]
. __ ¢/ loglogn
- f'} —n / o
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Hardness of SVP
(it's hard...)

 Van Emde Boaz asked in 1981 whether SVP 1s NP-hard.

 Answered in 1998 by Ajtai. (Yes.)

 NP-hard to approximate to within any constant [CN98, MicO1, KhoO35]
e “Hard” to approximate to “near-polynomial” factors [..., HR12]

- =
e All known reductions are randomized [Mic12]

‘n(:/ log log n
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Hardness of SVP:
Dream Proof

CVP SVP?
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Hardness of SVP:
Dream Proof

CVP SVP?
I , (A —t
(A, t) Al = (0 S)
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Hardness of SVP:
Dream Proof

CVP

(A, t)

L(A") = {(y — kt, ks)

Noah Stephens-Davidowitz

e

SVP?

(A —t
= (() s)

. ye L(A), ke Z}

Fine-grained hardness of lattice problems



Hardness of SVP:
Dream Proof

CVP

(A, t)

L(A") = {(y — kt, ks)

SVP?

. (A —t
= (() s)

. ye L(A), ke Z}

For y € L(A), (y — t,s) € L(A’) with ||(y — t, )||2 = s” + [ly — t||”.
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Hardness of SVP:
Dream Proof

CVP

(A, t)

L(A") = {(y — kt, ks)

. ye L(A), ke Z}

Fory € L(A), (y —t,s) € L(A') with ||(y — t,5)[[5 = s? + |ly — t]||P.

)

Problem: Short vectors (y — kt, ks) € L(A') for k £ +1.
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Hardness of SVP:
Dream Proof

CVP

(A, t)

L(A") = {(y — kt, ks)

. ye L(A), ke Z}

Fory € L(A), (y —t,s) € L(A') with ||(y — t,5)[[5 = s? + |ly — t]||P.

)

Problem: Short vectors (y — kt, ks) € L(A') for k £ +1.

Really only & = 0 is a problem. I.e., short vectors in L(A).

Noah Stephens-Davidowitz
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Hardness of SVP:
Dream Proof

(A —t
A'—(O s)

Problem: Maybe A" (£(A)) < dist,(t, £(A)).
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Problem: Maybe A" (£(A)) < dist,(t, £(A)).

Ideal solution: Just assume that this doesn’t happen.
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Dream Proof

(A —t
A'—(U s)

Problem: Maybe A" (£(A)) < dist,(t, £(A)).

Ideal solution: Just assume that this doesn’t happen.

Real solution: Assume that it doesn’t happen “often.”
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Hardness of SVP:
Dream Proof
v=(5 )

Problem: Maybe A(lp)([:(A)) < dist, (t, L(A)).

Ideal solution: Just assume that this doesn’t happen.

Real solution: Assume that it doesn’t happen “often.”

N,(L,r) ={yeLl : |lyll, <} (Number of short vectors.)
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Hardness of SVP:
Dream Proof

, (A —t
A'—(U s)

Problem: Maybe A" (£(A)) < dist,(t, £(A)).
Ideal solution: Just assume that this doesn’t happen.
Real solution: Assume that it doesn’t happen “often.”

N,(L,r) ={yeLl : |lyll, <} (Number of short vectors.)

Ny(L,r;t):={y e L : |ly —t|, <r} (Number of close vectors.)

Noah Stephens-Davidowitz Fine-grained hardness of lattice problems



Hardness of SVP:
Dream Proof

(A —t
A'_(() s)

Problem: Maybe )\(lp)([:(A)) < dist, (t, L(A)).

Ideal solution: Just assume that this doesn’t happen.
Real solution: Assume that it doesn’t happen “often.”
N,(L,r) ={yeLl : |lyll, <} (Number of short vectors.)

N,(L,r;t) :=|{yeL : |ly—t|, <r} (Number of close vectors.)

Ny(L(A),r) K N,(L(A),r; t)
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Hardness of SVP:
Dream Proof

(A —t
A'—(U s)

Problem: Maybe A" (£(A)) < dist,(t, £(A)).

Ideal solution: Just assume that this doesn’t happen.

Real solution: Assume that it doesn’t happen “often.”

N,(L,r) ={yeLl : |lyll, <} (Number of short vectors.)

N,(L,r;t) :=|{yeL : |ly—t|, <r} (Number of close vectors.)
AYP(E(A), 'I') < JNYP(L(A), r, t)

“Many more close vectors than short vectors.”
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Sparsification
| KhotO5]

(A —t
A= (() s)

“Many more close vectors than short vectors.”
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Sparsification
| KhotO5]

(A —t
A= (() s)

“Many more close vectors than short vectors.”

/ > c
L' :={Az : z € 2T e e Tn412n+1 = 0 mod g}
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Sparsification
| KhotO5]

(A —t
A= (() s)

“Many more close vectors than short vectors.”
, pe -
£ i={Az : z¢€ 20w mh o e v 1By = 0 H6d q}

X ~ ZZ“"H
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Sparsification
| KhotO5]

(A —t
A= (() s)

“Many more close vectors than short vectors.”
, pe -
£ i={Az : z¢€ 20w mh o e v 1By = 0 H6d q}

X ~ ZZ“"H

q =~ Np(L(A),T;t)
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Sparsification
| KhotO5]

, (A —t
A'—(O s)

“Many more close vectors than short vectors.”
/ =
£ i={Az : z¢€ 20w mh o e v 1By = 0 H6d q}

X ~ ZZ“"H

q~ NP(L(A)v T t)
Vectors in L' “look” independent with Prly € L' | y € L(A’)] = 1/q.
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Sparsification
| KhotO5]

(A —t
A= (() s)

“Many more close vectors than short vectors.”

L= {Az : z € 2T e e Tn412n+1 = 0 mod g}

If the initial CVP instance has many more close vectors than short
vectors, then the shortest vector in £" will “correspond to” a close
vector with high probabillity.

~ Np(L(A),r;t)

q Y r?
ectors in “look” independent with Pr|y &€ y € = 1./¢g:
V in £ “look 1 1 th:P L LA’ 1
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Sparsification
| KhotO5]

, (A —t
A= (() s)

“Many more close vectors than short vectors.”

L i={Az : 22" piz+ -+ BaprZase =0mod g}

If the initial CVP instance has many more close vectors than short
vectors, then the shortest vector in £" will “correspond to” a close
vector with high probabillity.
e
~ Np(L(A),r;t)

q y T

It suffices to show hardness of CVP with more close vectors than
short vectors.

(Note: The resulting lattice looks a lot like the lattices used in
cryptography.)
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Increasing the Ratio of
Close Vectors to Short Vectors
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Increasing the Ratio of
Close Vectors to Short Vectors

Gadget: (AT, t")
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Increasing the Ratio of
Close Vectors to Short Vectors

Gadget: (AT, t")

5 A 0 ~ t
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Increasing the Ratio of
Close Vectors to Short Vectors

In order to get "many more close vectors than short vectors”, we want

N(L(AD), 73t Ny(£(A),7)
Np(L(AT), rt) Np(L(A),T;t)

~ 2C’n

(Our hard CVP instance from before is basically just
A=I,andt=(1/2,...,1/2))

B
Ny (L, (P + (rT)P)H/P) & N, (L(A),7) - Np(L(AT), rT)
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Increasing the Ratio of
Close Vectors to Short Vectors

In order to get "many more close vectors than short vectors”, we want

Np(LAD. ) | Ny(LALT) o,
N (LA ) Ny(L(A), )

(Our hard CVP instance from before is basically just
A=I,andt=(1/2,...,1/2))
———

AN
/.~ / m " / +\fY)\1//Y\\ n / o~/ A\ \ n r /A/A+\ +\

All hardness reductions for SVP use some gadget like this. We show that
any such gadget implies hardness.

e —
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Increasing the Ratio of
Close Vectors to Short Vectors

5 A 0 ~ t
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Increasing the Ratio of
Close Vectors to Short Vectors

5 A 0 ~ t

rank(£) = n + n'

Noah Stephens-Davidowitz Fine-grained hardness of lattice problems



Increasing the Ratio of
Close Vectors to Short Vectors

5 A 0 ~ t

rank(£) = n + n'

(
N,(L(AT), rT;tT) S 9Q(n)
NP(E(AT)7TT) B
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Increasing the Ratio of
Close Vectors to Short Vectors

5 A 0 ~ t

To prove 92(n)-hardness, we need n' = O(n). l.e.,
T
N, (L(AT),rT;¢T) > 99(n")
Np(L(AT), rt)

I EEEEEEETTTTRSS=._\— 55~
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Building the Gadget
o> 2.14

Np(ﬁT, ri:tT)

Np('CT? TT)

> 9n’)

Noah Stephens-Davidowitz
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Building the Gadget
o> 2.14

Tt 47
Np(ﬁ s ,t ) Z QQ(nT)
Np('CTaTT)
For p > 2.14, L := 7" th = (1/2,...,1/2), and r' := (n")}/?/2 works!
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Building the Gadget
o> 2.14

Tt 47
Np(ﬁ s ,t ) Z QQ(nT)
Np('CTaTT)
For p > 2.14, L := 7" th = (1/2,...,1/2), and r' := (n")}/?/2 works!

This is a very convenient gadget!

r1 = dist, (t7, £1)

L~z T (1/2,...,1/2)

I EEEEEETTTRRSSS=—=.—\—_———>»,
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Building the Gadget
o> 2.14

T .1,
N, (L', rT;tT) > 90(n')
Np('CTaTT)

For p > 2.14, L := 7" th = (1/2,...,1/2), and r' := (n")}/?/2 works!

This is a very convenient gadget!

rfo=dist,(tT, L") L~z tTa(1/2,...,1/2)
——_—

We just need to study the number of integer vectors in ¢, balls.

E  ——8
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Integer points in £_p balls

Noah Stephens-Davidowitz Fine-grained hardness of lattice problems



Integer points in £_p balls

Op(7) := ) exp(—|2[P)

VA=Y )
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Integer points in £_p balls

Op(7) := ) exp(—|2[P)

VA=Y )

Op(1)" = ) exp(—7|z|?)

zEL™
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Integer points in £_p balls

Op(7) := ) exp(—|2[P)

VA=Y )

Op(1)" = ) exp(—7|z|?)

zEL™

N (Z7sr):< explre®)  Op(1)"
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Integer points in £_p balls

0,(7) == 3 exp(~7l2]?)

VA=Y )

Op(1)" = ) exp(—7|z|?)

zEL™

N (Z7sr):< explre®)  Op(1)"

Np(Zna 7') ~ inf eXp(T7'p) : @p (7.)7'1.

>0
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Integer points in £_p balls

0,(7) == exp(—z[?)

VA=Y )

Op(1)" = )  exp(—r||z|/”)
ZEL™

Np(Z",7) < exp(rr?) - ©p(7)"

Np(Zn, 'T') ~ inf exp(rrp) : @p (7_)71.

>0

Technigue due to [Mazo, Odlyzko 90] and [EOR91].

e —— e ——
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SETH-Hardness for p > 2.14
via the Integer Lattice

No 2%"_time algorithm for SVP, unless SETH fails.
(For “almost all” p 2 2.14.)
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GapETH-Hardness for p > 2
via the Integer Lattice
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GapETH-Hardness for p > 2
via the Integer Lattice
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GapETH-Hardness for p > 2
via the Integer Lattice

rt.—gn th = (tJr ..... tT) Pl = @(nl/p)

(To analyze this, we study O, (r;t") =3, e‘ﬂz_mp.)
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GapETH-Hardness for p > 2
via the Integer Lattice

rt.—=zn th .= (¢t1,...,t") ri = 0(n!/?)
(To analyze this, we study O, (r;t") =3, e‘ﬂz_mp.)

2£(")_hardness assuming no 2°(™-time algorithm for Gap-2-SAT.
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GapETH-Hardness for p > 2
via the Integer Lattice

rr.— g th .= (¢t1,...,t") rT = 0(n'/P)
(To analyze this, we study O, (r;t") =3, e‘ﬂz_mp.)
2£(")_hardness assuming no 2°(™-time algorithm for Gap-2-SAT.

Because rT > dist(t, £T), we need to reduce from approx-CVP, so we
get weaker hardness.

B TTT——————,;hshhh.
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GapETH-Hardness for p > 2
via the Integer Lattice

rr.— g th .= (¢t1,...,t") rT = 0(n'/P)
(To analyze this, we study O, (r;t") =3, e‘ﬂz_mp.)
2£(")_hardness assuming no 2°(™-time algorithm for Gap-2-SAT.

Because rT > dist(t, £T), we need to reduce from approx-CVP, so we
get weaker hardness.

e

(The integer lattice can’t work for p < 2))

B ————————
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What about p = 27!

NP(LTarT;tT) >

Np('CT? TT)

2Q(nT)
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What about p = 27!

NP(LTarT;tT) >

Np('CT? TT)

QQ(nT)

Implies hardness for p < 2 [Regev, Rosen '06].
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What about p = 27!

NP(LTarT;tT) >

Np('CT? TT)

QQ(RT)

Implies hardness for p < 2 [Regev, Rosen '06].
Certain (reasonable?) geometric conjectures yield such a gadget.
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What about p = 27!

NP(LTarT;tT) >

Np('CT? TT)

QQ(RT)

Implies hardness for p < 2 [Regev, Rosen '06].
Certain (reasonable?) geometric conjectures yield such a gadget.
Most natural: lattice with exponential kissing number.
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What about p = 27!

NP(LTarT;tT) >

Np('CT? TT)

QQ(RT)

Implies hardness for p < 2 [Regev, Rosen '06].
Certain (reasonable?) geometric conjectures yield such a gadget.

Most natural: lattice with exponential kissing number.
.e., NGB AL Baatted
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What about p = 27!

NP(LTarT;tT) >

Np('CT? TT)

QQ(RT)

Implies hardness for p < 2 [Regev, Rosen '06].
Certain (reasonable?) geometric conjectures yield such a gadget.

Most natural: lattice with expo
.e., NGB AL Baatel

n@)ntial Kissing number.

(Justtake rf = (1 -\ (L0),tt ~0)

Noah Stephens-Davidowitz

Fine-grained hardness of lattice problems



What about p = 27!

NP(LTarT;tT) >

Np('CT? TT)

QQ(RT)

Implies hardness for p < 2 [Regev, Rosen '06].
Certain (reasonable?) geometric conjectures yield such a gadget.

Most natural: lattice with expo
6., Nl A (LN) Bl

n§;'1tial Kissing number.

(Justtake rf = (1 -\ (L0),tt ~0)
Seems hard, so we give weaker conditions that also suffice.
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What about p = 27!

T .1,
N, (L', rT;tT) > 90(n')
NP(LTarT)

e |mplies hardness for p < 2 [Regev, Rosen '06].
e (ertain (reasonable”?) geometric conjectures yield such a gadget.
e Most natural: lattice with expongntlal Kissing number.

- le., Na(LT, N (‘” (E1)) Banin

- (Just take o (1—2(2),tT~0)

- Seems hard, so we give weaker conditions that also suffice.

- Proven by Serge Viadut in February!!
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What about p = 27!

SVP, is 22(")_hard unless GapETH fails!

e |mplies hardness for p < 2 [Regev, Rosen '06].
e (ertain (reasonable”?) geometric conjectures yield such a gadget.

e Most natural: lattice with exponential kissing number.
- e, Na(Lh AT (L) > 2%
~ (usttake T =1 —e\P(0),tT ~0)
- Seems hard, so we give weaker conditions that also suffice.
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summary

Upper Bound l Lower Bounds Notes
SETH | Gap-I'1TH
o p < o 2(‘),'_“ : 2,--' n | 2(2::» : Do X 2 14.
9 » < po 9O(n) 2522:11 4
1 <p<?2 Otn) 2440
p=2 2R (2V-59n) 2n Upper bounds from [ADRS15, BDGL15)
L X 3 :2':“"""‘} 'l 2" 252:“ l'p])('l' bounds from \\[I\
Blue = new result.
(...) = heuristic algorithm
* = hardness for some constant approximation factor
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The Path Forward

Crypto
(LWE/RLWE)

Current best
algorithm!

Noah Stephens-Davidowitz

Non-standard
lattice problem.
(BDD)

(Embedding)

"~

Exact/near exact
problem.

(SVP, lower
dimension)

<«

(Basis reduction/
BK?Z7)

Promise problem.
(y-GapSVP)

> LLLE

Approximate
search problem.
(Y-SVP)
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The Path Forward

(LWE/RLWE) \; 'a“'C(eB%rggﬂem- (Embedding) (y-GapSVP)

Not tight enough Not tight enough

> LLLE

C;Jlgggihkﬁﬁ!st \jl Exact/near exact 4— Approximate
problem. (Basis reduction/ | search problem.
(SVP, lower BKZ) (y-SVP)
dimension)

Noah Stephens-Davidowitz Fine-grained hardness of lattice problems



The Path Forward

Crypto Nqn—standard q Promise problem.
(LWE/RLWE) \; 'a“'C(eB%rggﬂem- (Embedding) (y-GapSVP)

Not tight enough Not tight enough

> LLLE

Current best | «uum—
algorithm! \j Exact/near exact 4— Approximate
problem. (Basis reduction/ | search problem.
(SVP, lower BKZ) (y-SVP)
Not tight enough dimension)
(More “rigid” gadgets?

More careful analysis of Vladut’s lattice?)
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The Path Forward

Crypto Nqn—standard q Promise problem.
(LWE/RLWE) \; 'a“'C(eB%rggﬂem- (Embedding) (y-GapSVP)

Not tight enough Not tight enough

> LLLE

Current best | «uum—
algorithm! \j Exact/near exact 4— Approximate
problem. (Basis reduction/ | search problem.
(SVP, lower BKZ) (y-SVP)
Not tight enough dimension) 1N
(More “rigid” gadgets? Yanw

More careful analysis of Vladut’s lattice?)
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The Path Forward

Crypto
(LWE/RLWE)

Non-standard
lattice problem.
(BDD)

Not tight enough

Current best
algorithm!

—
NN

Not tight enough
(More “rigid” gadgets?

(Embedding)

"~

Not tight enough

Exact/near exact
problem.

(SVP, lower
dimension)

<«

(Basis reduction/
BK?Z7)

More careful analysis of Vladut’s lattice?)

Noah Stephens-Davidowitz

Promise problem.
(y-GapSVP)

*

V.

Approximate
search problem.
(Y-SVP)

Fine-grained hardness of lattice problems




The Path Forward—
s BKZ Optimal

Exact/near exact

Approximate roblem
search problem. | =——) (g\/p |0Wér
(-SVP)  |w "I dimensi
. ’ dimension)

¢
D S
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The Path Forward—
s BKZ Optimal

Exact/near exact

Approximate roblem
search problem. | —) (g\/p ower
(-SVP)  |w "I dimensi
. ’ dimension)

¢
D S
NP-hard
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The Path Forward—
s BKZ Optimal

Exact/near exact

Approximate roblem
search problem. | =——) (g\/p |0Wér
(SvP)  |w “|  dimens

. ’ dimension)
D S ’
NP N co-NP NP-hare
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The Path Forward—
s BKZ Optimal

Exact/near exact

Approximate roblem
search problem. | =——) (g\/p |0Wér
(SvP)  |w “|  dimens

. ’ dimension)
D S ’
NP N co-NP NP-hare

Any reduction in the other direction has to be “interesting.”

Superpolynomial? Non-deterministic”? Non-uniform?

e
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Maybe BKZ is fundamentally the wrong approach for approximate
lattice problems?
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Any reduction in the other direction has to be “interesting.”

Superpolynomial? Non-deterministic”? Non-uniform?
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