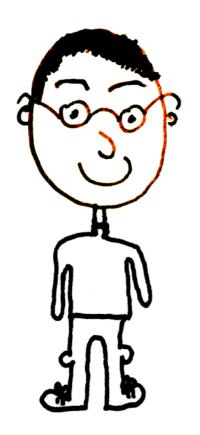
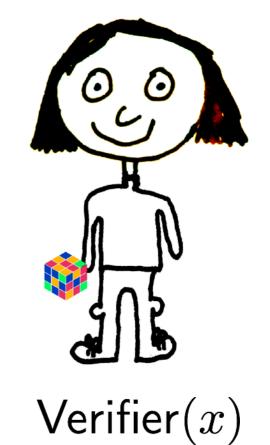
Multi-Theorem Preprocessing NIZKs from Lattices

Sam Kim and David J. Wu Stanford University

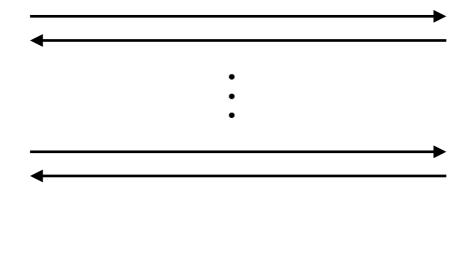
NP Language \mathcal{L}

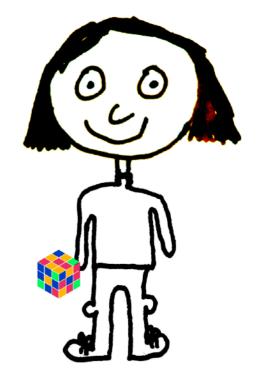


 $\mathsf{Prover}(x,w)$



NP Language \mathcal{L}



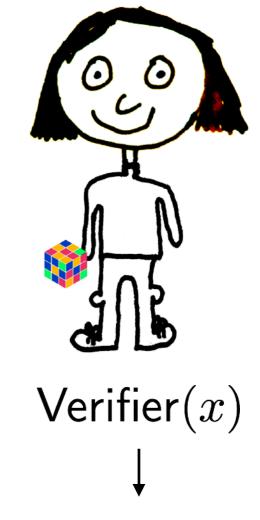


 $\mathsf{Prover}(x,w)$

Verifier(x)

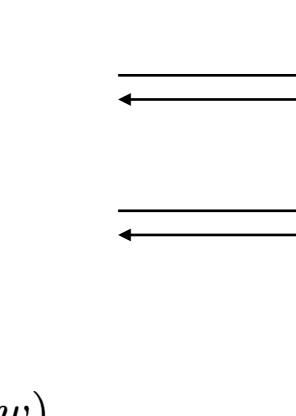
NP Language \mathcal{L}

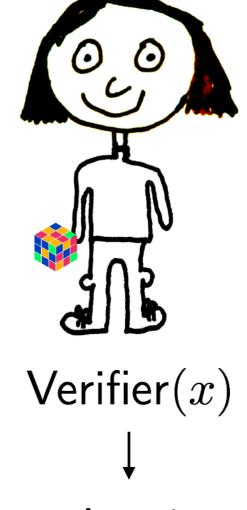
Prover(x, w)



Accept / Reject

NP Language \mathcal{L}





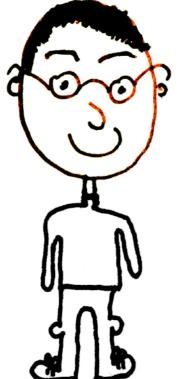
 $\mathsf{Prover}(x,w)$

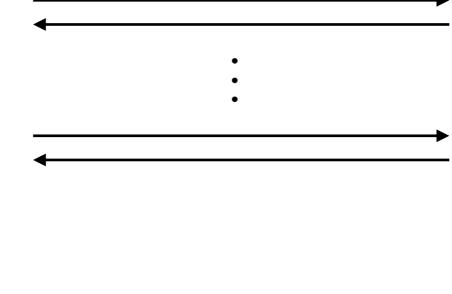
Requirements:

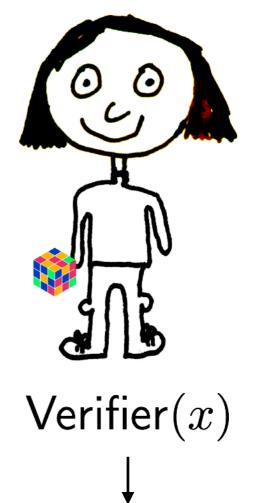
1. Completeness

Accept

NP Language \mathcal{L}







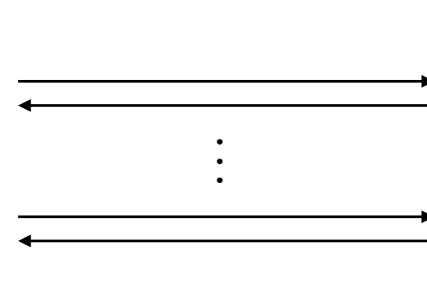
 $\mathsf{Prover}(x \notin \mathcal{L})$

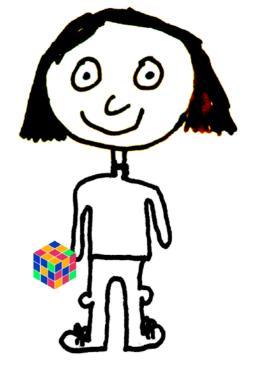
Requirements:

- 1. Completeness
- 2. Soundness

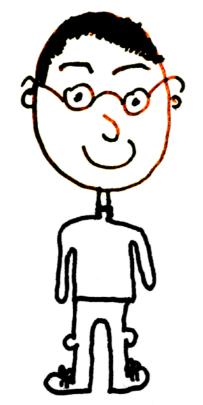
Reject

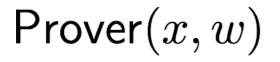
NP Language \mathcal{L}





Verifier(x)

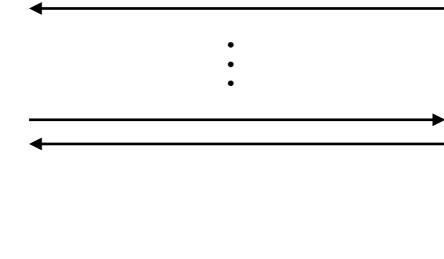


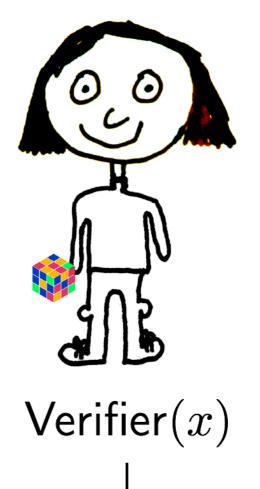


Requirements:

- 1. Completeness
- 2. Soundness
- 3. Zero-Knowledge

NP Language \mathcal{L}





???

 $Sim(x \in \mathcal{L})$

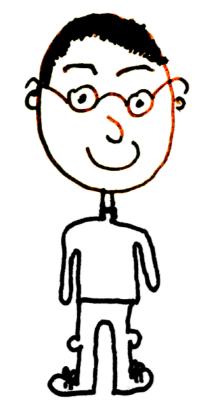
Requirements:

- 1. Completeness
- 2. Soundness
- 3. Zero-Knowledge

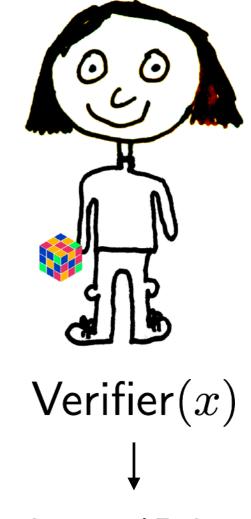
Natural to ask: Can we have "one-shot" ZK proofs?

Natural to ask: Can we have "one-shot" ZK proofs?

NP Language \mathcal{L}



 $\mathsf{Prover}(x,w)$

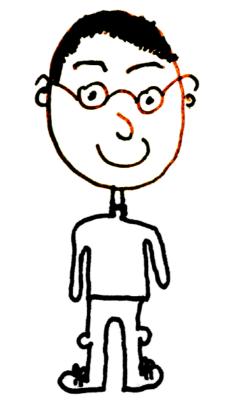


Accept / Reject

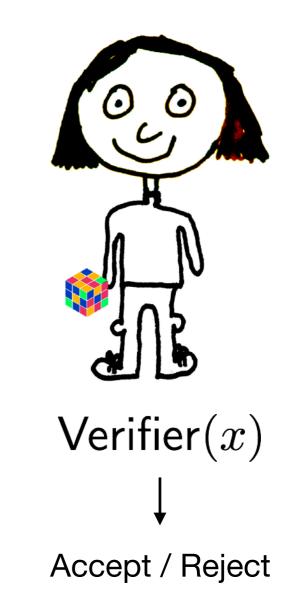
Natural to ask: Can we have "one-shot" ZK proofs?

NP Language \mathcal{L}

 π



 $\mathsf{Prover}(x,w)$



Natural to ask: Can we have "one-shot" ZK proofs?

Natural to ask: Can we have "one-shot" ZK proofs?

Can only achieve for "easy" languages in standard model [GO94]

Soundness + Zero-Knowldge implies Efficient Decision Algorithm

Natural to ask: Can we have "one-shot" ZK proofs?

Can only achieve for "easy" languages in standard model [GO94]

Soundness + Zero-Knowldge implies Efficient Decision Algorithm

Work with weaker models:

- Random Oracle Model
- CRS Model

Natural to ask: Can we have "one-shot" ZK proofs?

Can only achieve for "easy" languages in <u>standard model</u> [GO94]

Soundness + Zero-Knowldge implies Efficient Decision Algorithm

Work with weaker models:

- Random Oracle Model
- CRS Model

This Work: We focus on the CRS Model (or preprocessing model)

Constructions for all of <u>NP</u>? (w/ efficient provers, reusable CRS, publicly verifiable, ...)

Constructions for all of <u>NP</u>?

(w/ efficient provers, reusable CRS, publicly verifiable, ...)

- 1. Trapdoor Permutations [FLS90, ...]
- 2. Pairings [GOS06, ...]
- 3. Indistinguishability Obfuscation [SW14, ...]

Constructions for all of <u>NP</u>?

(w/ efficient provers, reusable CRS, publicly verifiable, ...)

- 1. Trapdoor Permutations [FLS90, ...]
- 2. Pairings [GOS06, ...]
- 3. Indistinguishability Obfuscation [SW14, ...]

Still no construction from LWE.

- NIZK for specific languages [PV08, APS18, RSS18, ...]

Our Results

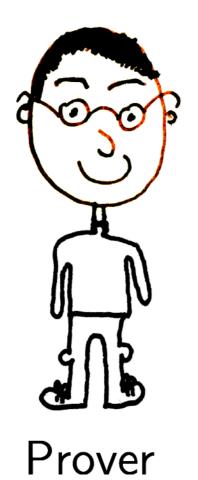
1. Construct NIZK for NP in preprocessing model from LWE

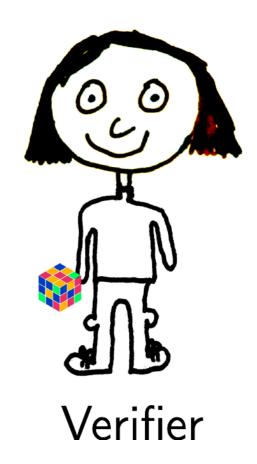
Our Results

- 1. Construct NIZK for NP in preprocessing model from LWE
- 2. Show how to do preprocessing
 - Blind Homomorphic Signatures (BHS)

Our Results

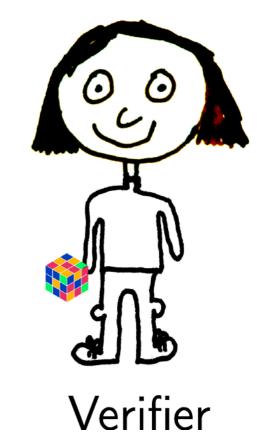
- 1. Construct NIZK for NP in preprocessing model from LWE
- 2. Show how to do preprocessing
 - Blind Homomorphic Signatures (BHS)
- 3. Applications to MPC

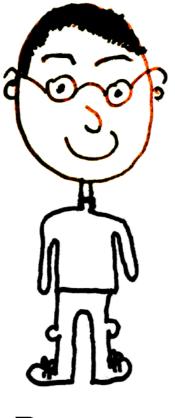




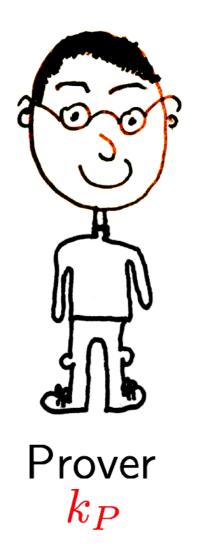
NP Language \mathcal{L}

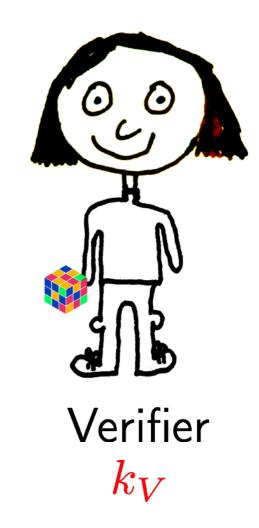
Preprocessing: Independent of <u>statement</u> or <u>witness</u>

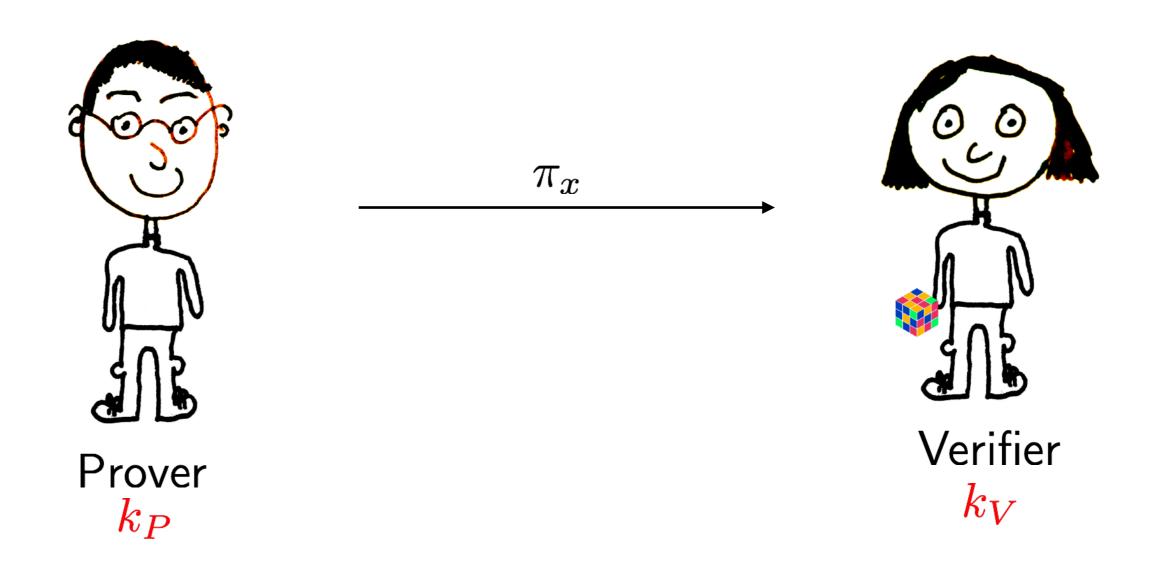


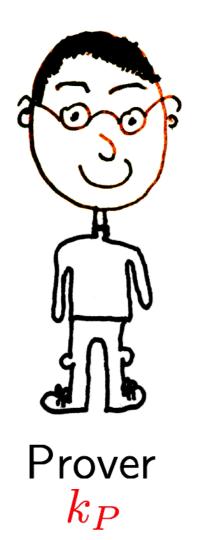


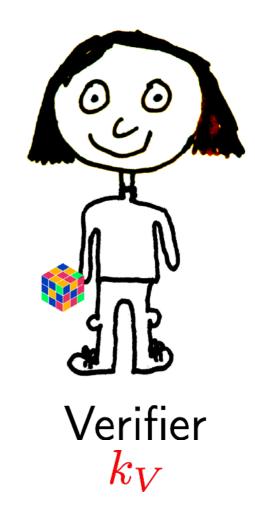
Prover

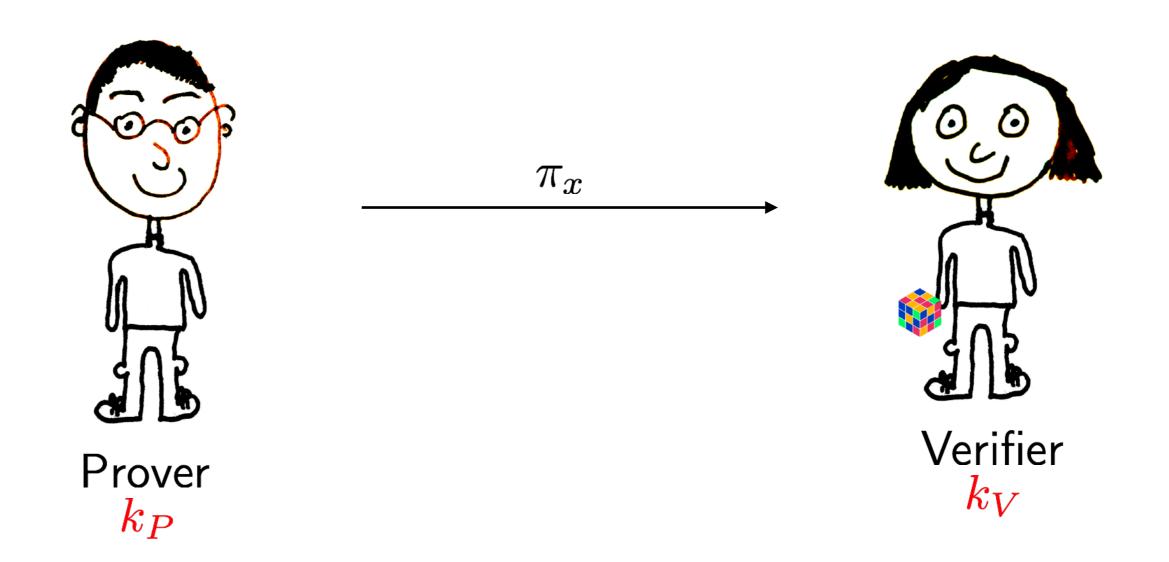


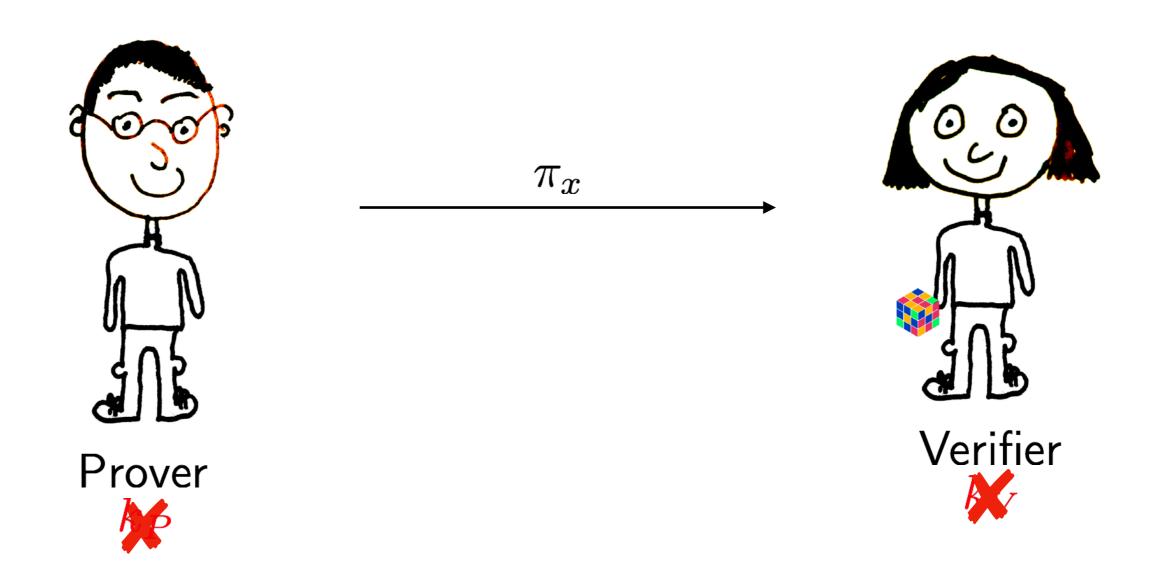




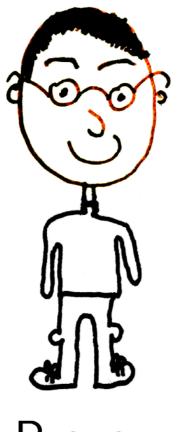






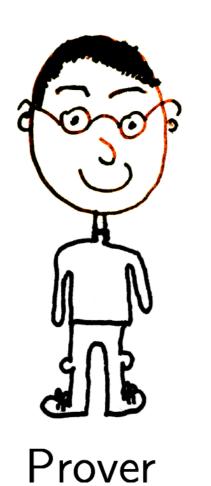


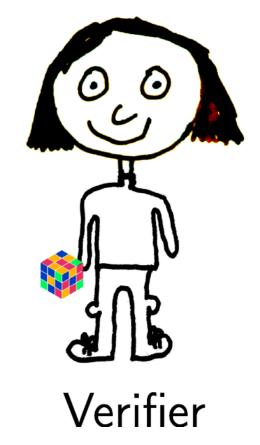
NP Language \mathcal{L}



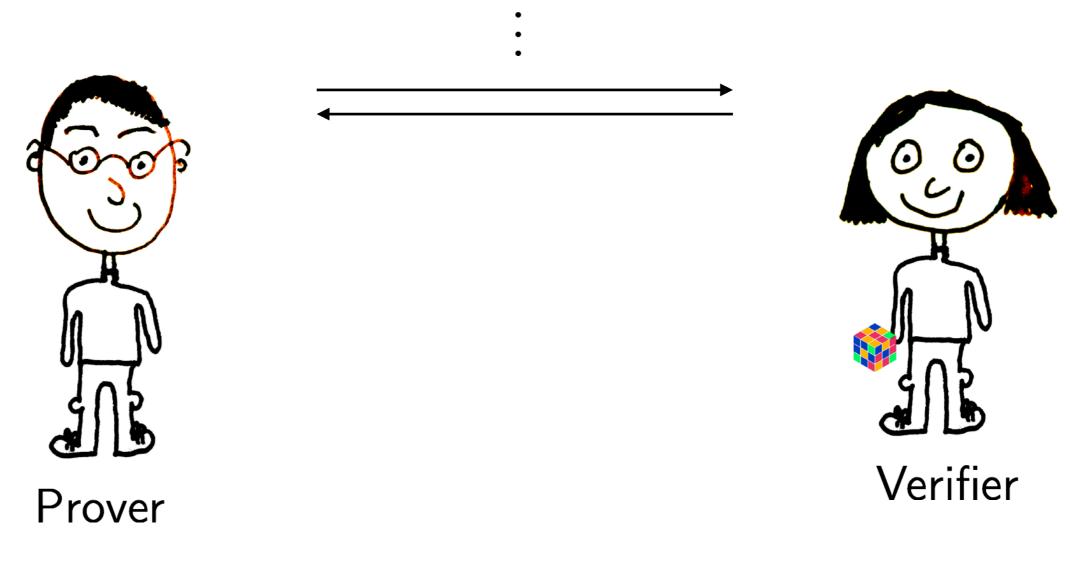
Verifier

Prover

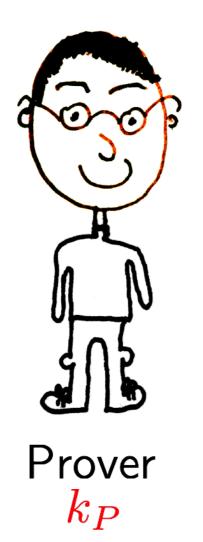


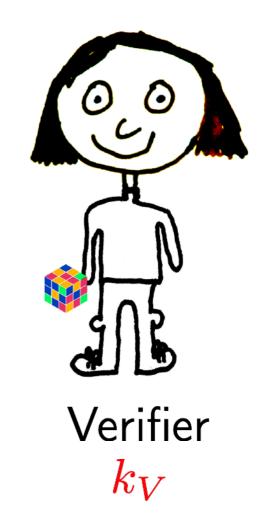


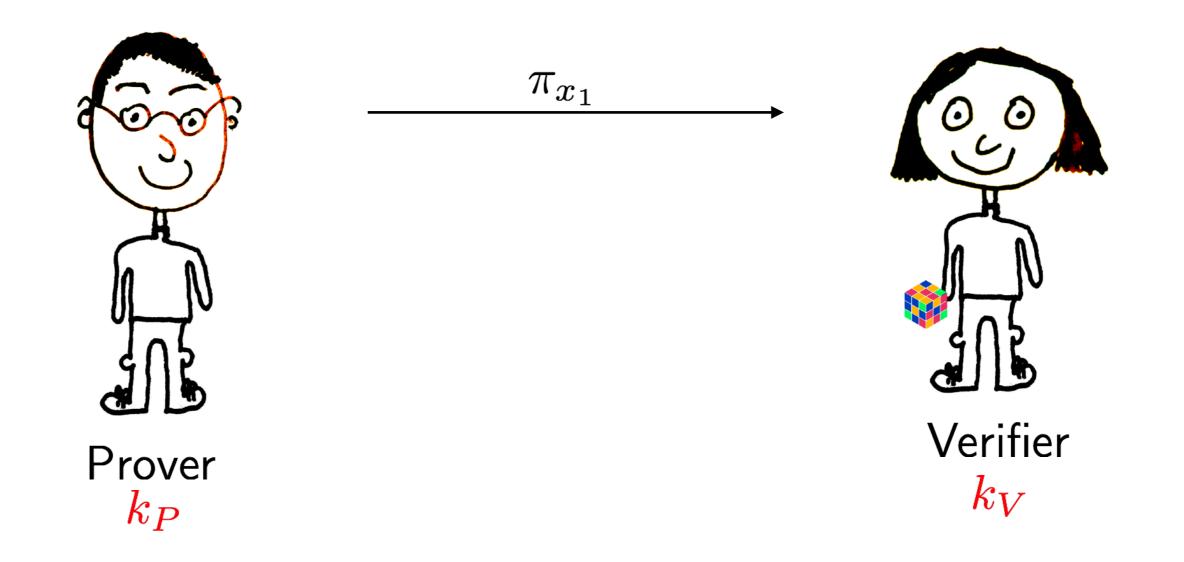
NP Language \mathcal{L}



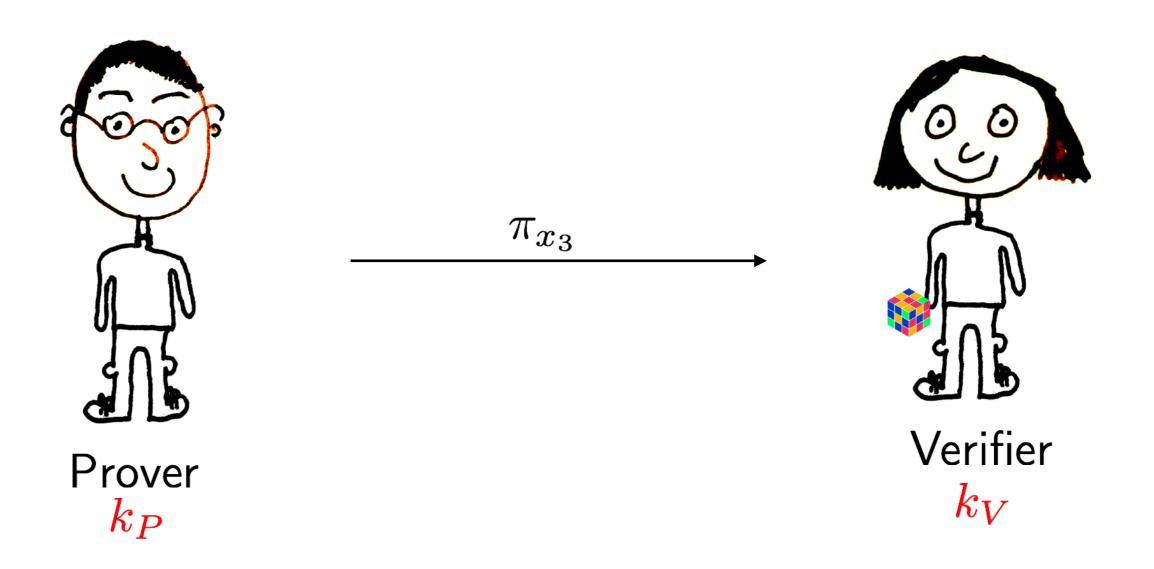
Easier to construct: follows from OWF [DMP88, ...]

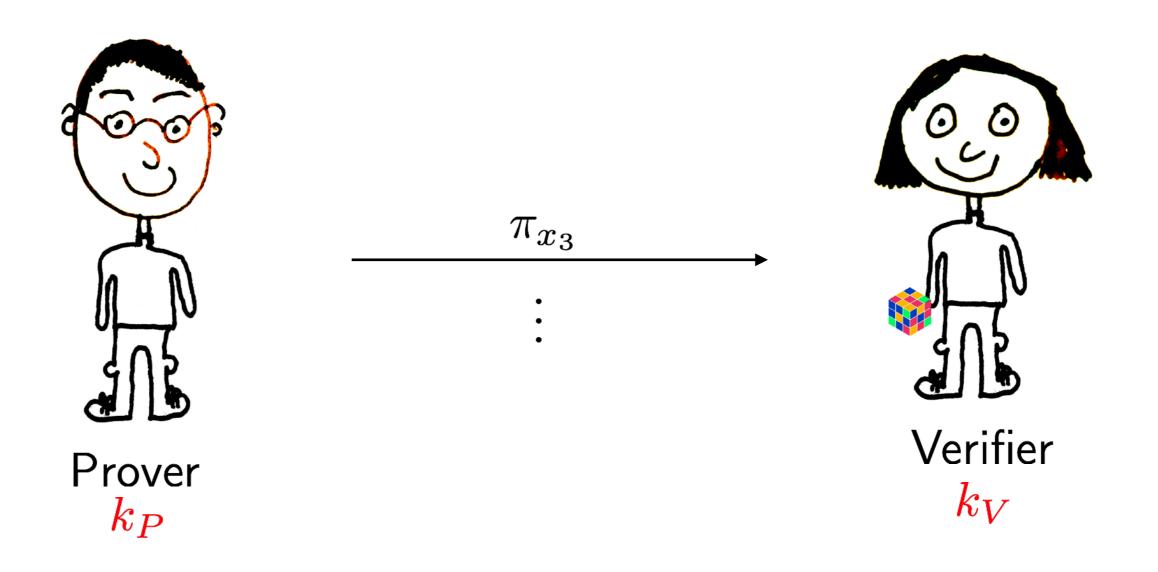


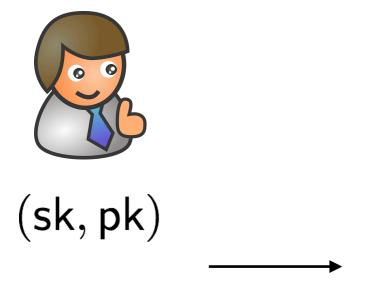


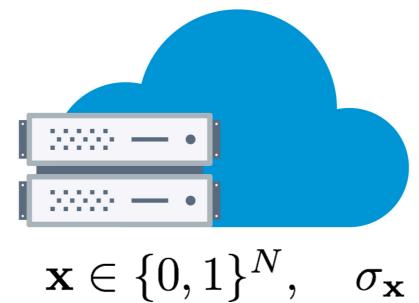


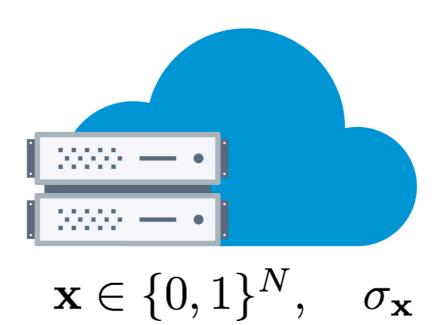


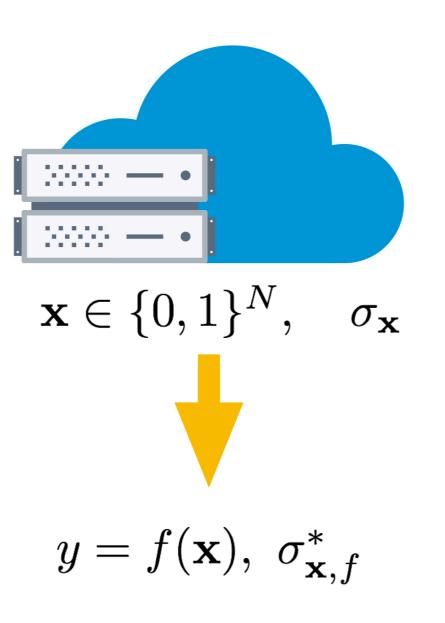


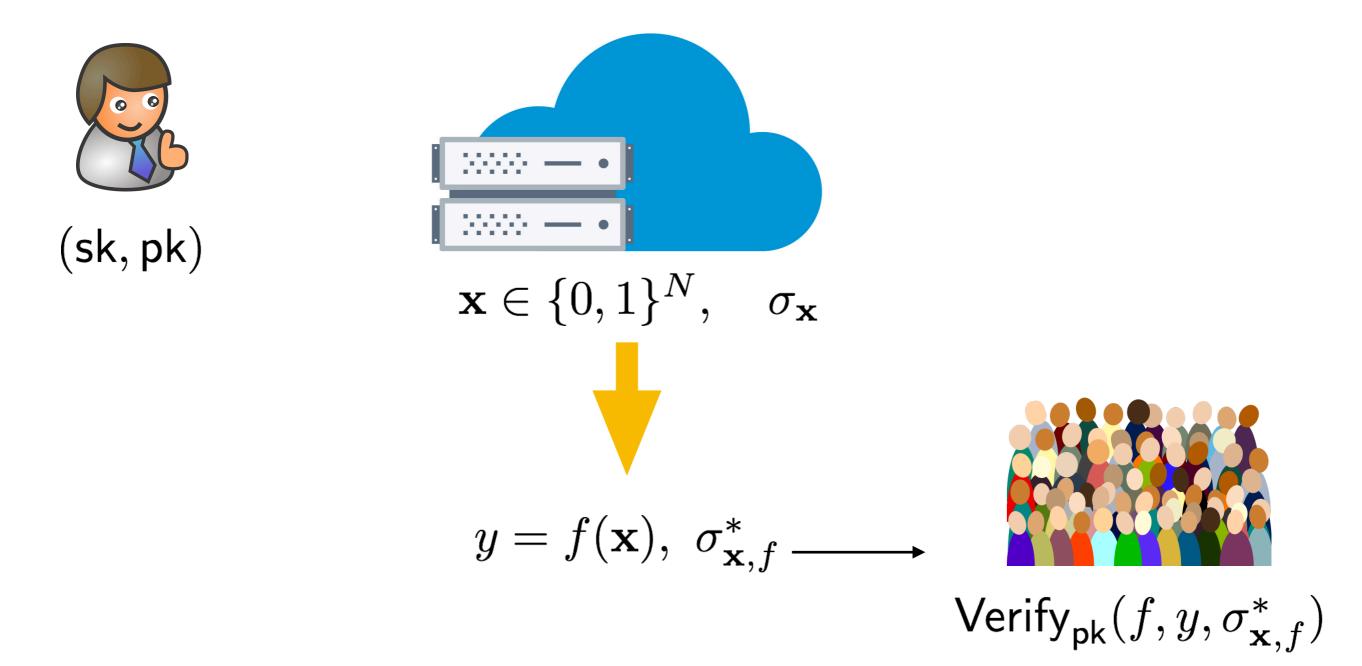


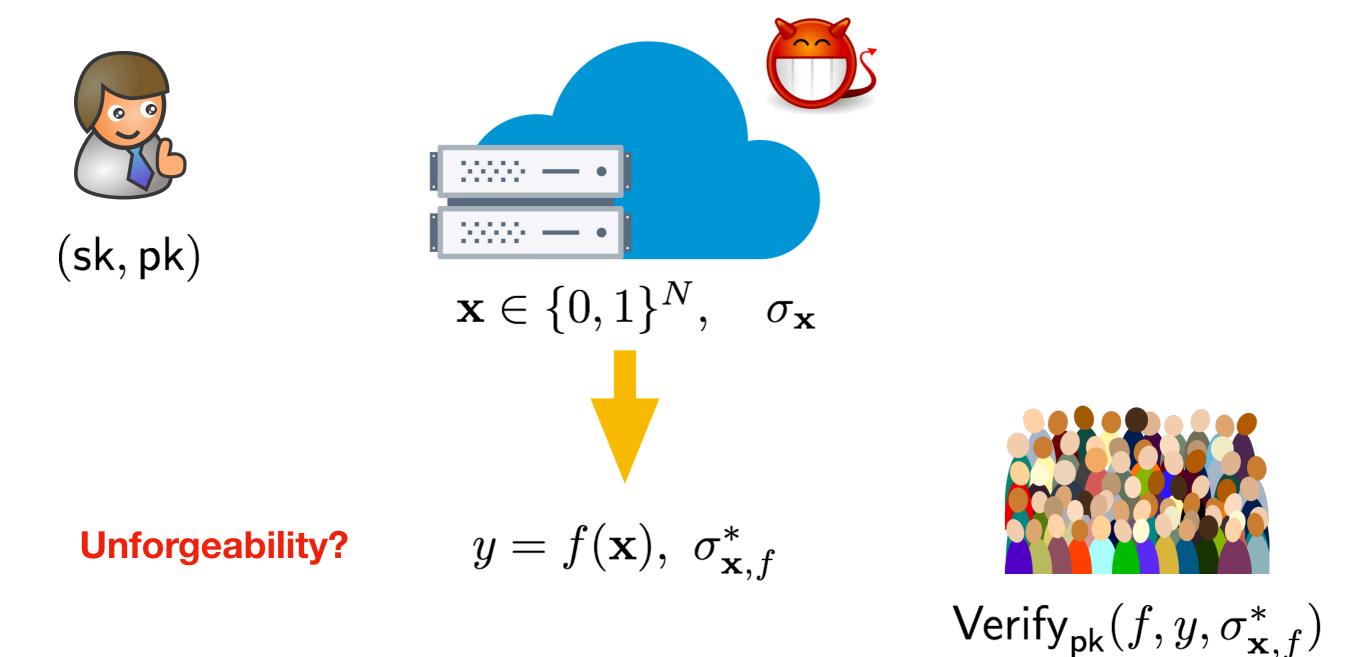


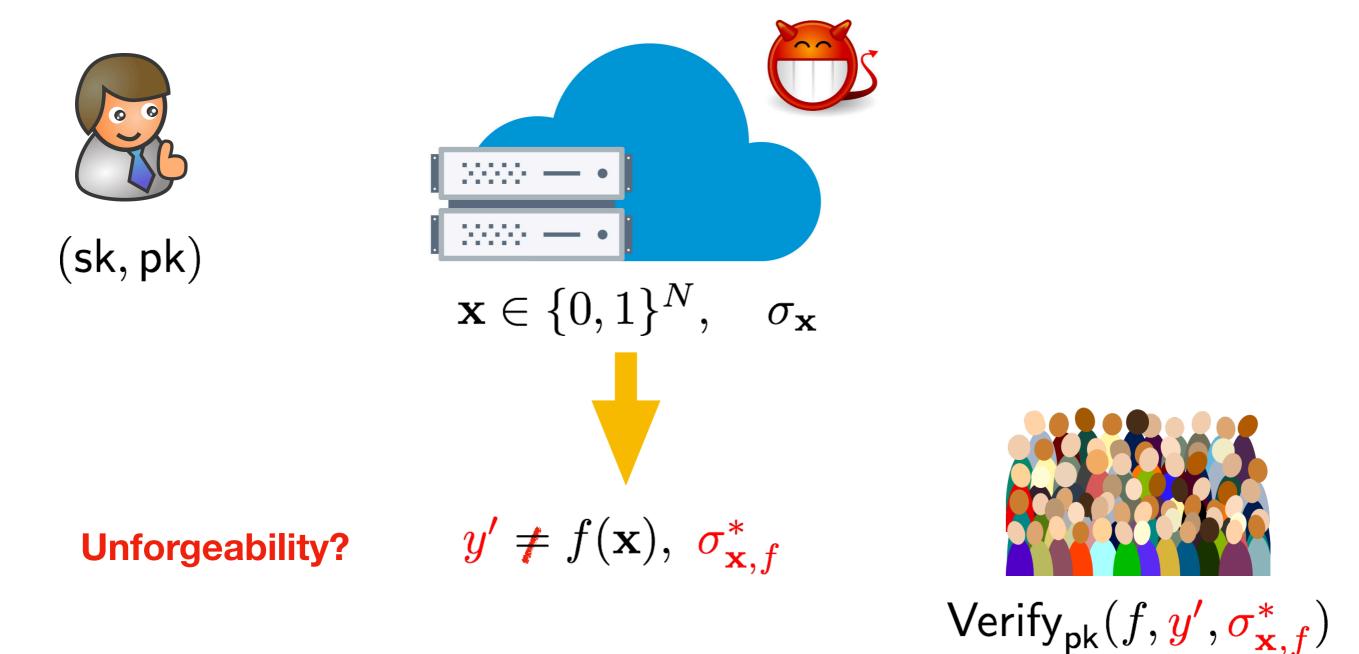


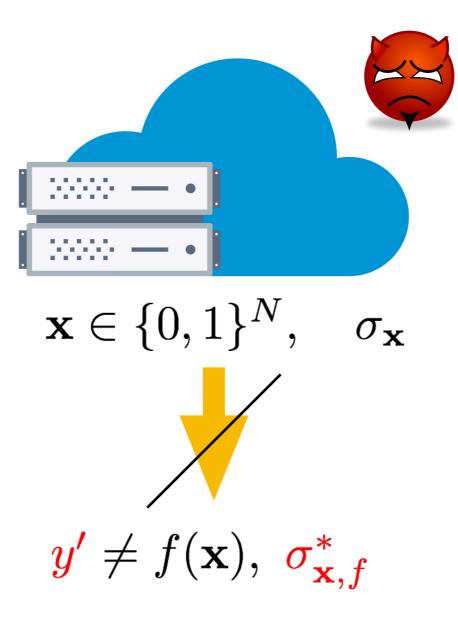






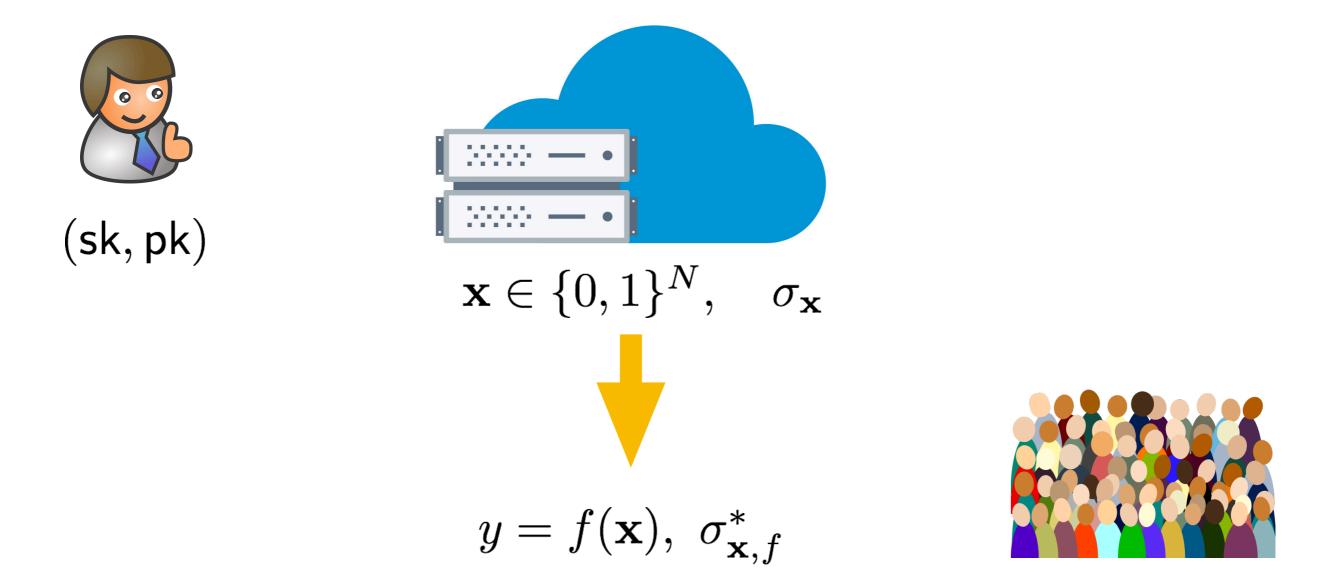




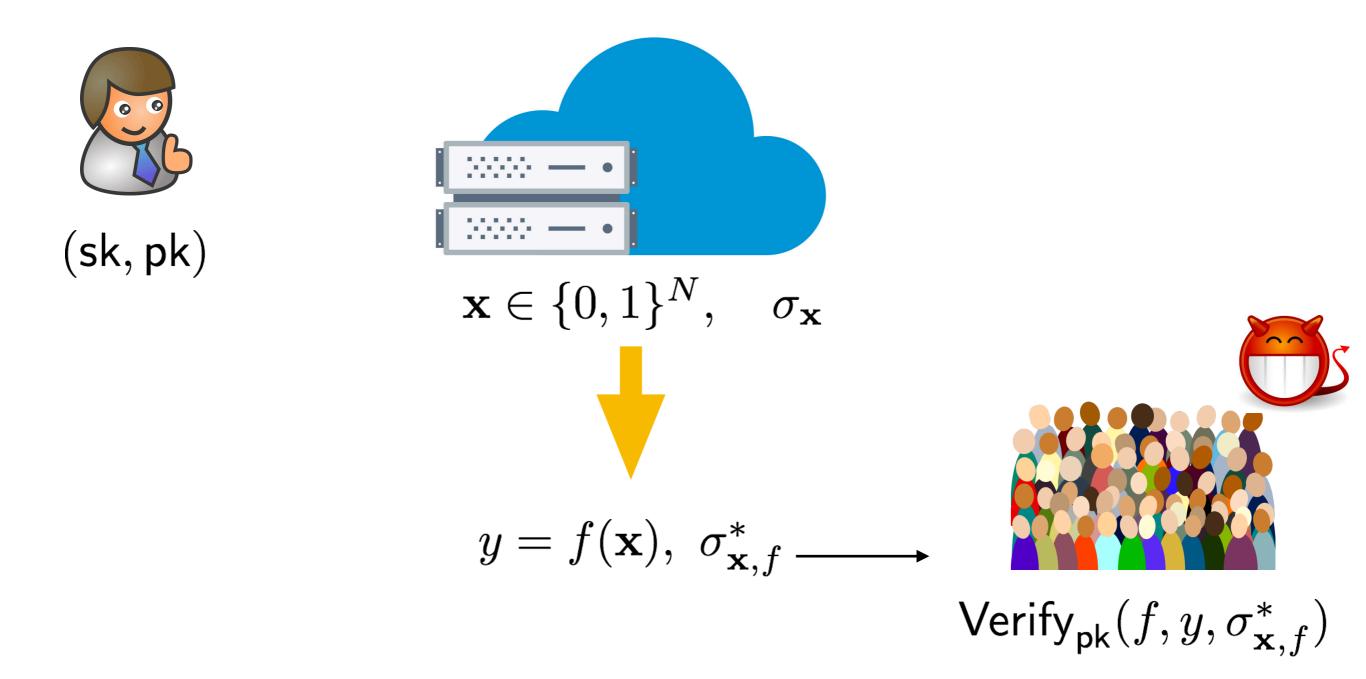


 $\mathsf{Verify}_{\mathsf{pk}}(f, \mathbf{y'}, \sigma^*_{\mathbf{x}, f})$

Unforgeability?



Compactness: signature size $|\sigma^*_{\mathbf{x},f}|$ independent of $|\mathbf{x}|$



Context-Hiding: $\sigma^*_{\mathbf{x},f}$ not reveal any more info about \mathbf{x}

 $\mathsf{pp} = \mathbf{C}_1, \dots, \mathbf{C}_N, \mathbf{G} \in \mathbb{Z}_q^{n imes m}$

$$\mathsf{pp} = \mathbf{C}_1, \dots, \mathbf{C}_N, \mathbf{G} \in \mathbb{Z}_q^{n imes m}$$

 $\mathsf{pk} = \mathbf{A} \in \mathbb{Z}_q^{n imes m}$ $\mathsf{sk} = \mathsf{td}_{\mathbf{A}}$

$$\mathsf{pp} = \mathbf{C}_1, \dots, \mathbf{C}_N, \mathbf{G} \in \mathbb{Z}_q^{n imes m}$$

$$\mathsf{pk} = \mathbf{A} \in \mathbb{Z}_q^{n imes m}$$

 $\mathsf{sk} = \mathsf{td}_{\mathbf{A}}$

Signature for $\mathbf{x} = (x_1, \dots, x_N)$ consists of short matrices $\sigma_{\mathbf{x}} = \mathbf{R}_1, \dots, \mathbf{R}_N \in \mathbb{Z}^{m \times m}$ such that

$$\mathbf{A} \cdot \mathbf{R}_1 + x_1 \cdot \mathbf{G} = \mathbf{C}_1$$
$$\vdots$$
$$\mathbf{A} \cdot \mathbf{R}_N + x_N \cdot \mathbf{G} = \mathbf{C}_N$$

$$\mathsf{pp} = \mathbf{C}_1, \dots, \mathbf{C}_N, \mathbf{G} \in \mathbb{Z}_q^{n imes m}$$

$$\mathsf{pk} = \mathbf{A} \in \mathbb{Z}_q^{n imes m}$$

 $\mathsf{sk} = \mathsf{td}_{\mathbf{A}}$

Signature for $\mathbf{x} = (x_1, \dots, x_N)$ consists of short matrices $\sigma_{\mathbf{x}} = \mathbf{R}_1, \dots, \mathbf{R}_N \in \mathbb{Z}^{m \times m}$ such that

$$\mathsf{pp} = \mathbf{C}_1, \dots, \mathbf{C}_N, \mathbf{G} \in \mathbb{Z}_q^{n imes m}$$

$$\mathsf{pk} = \mathbf{A} \in \mathbb{Z}_q^{n imes m}$$

 $\mathsf{sk} = \mathsf{td}_{\mathbf{A}}$

Signature for $\mathbf{x} = (x_1, \dots, x_N)$ consists of short matrices $\sigma_{\mathbf{x}} = \mathbf{R}_1, \dots, \mathbf{R}_N \in \mathbb{Z}^{m \times m}$ such that

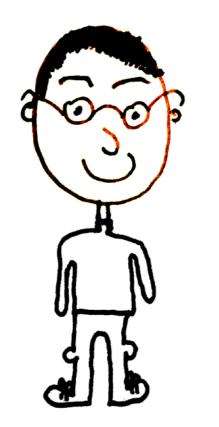
$$\mathbf{A} \cdot \mathbf{R}_1 + x_1 \cdot \mathbf{G} = \mathbf{C}_1$$

$$\vdots$$

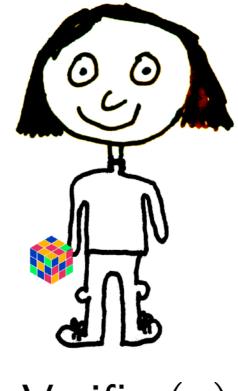
$$\xrightarrow{\mathbf{GSW}} \mathbf{A} \cdot \mathbf{R}_f + f(\mathbf{x}) \cdot \mathbf{G} = \mathbf{C}_f$$

 $\mathbf{A} \cdot \mathbf{R}_N + x_N \cdot \mathbf{G} = \mathbf{C}_N$

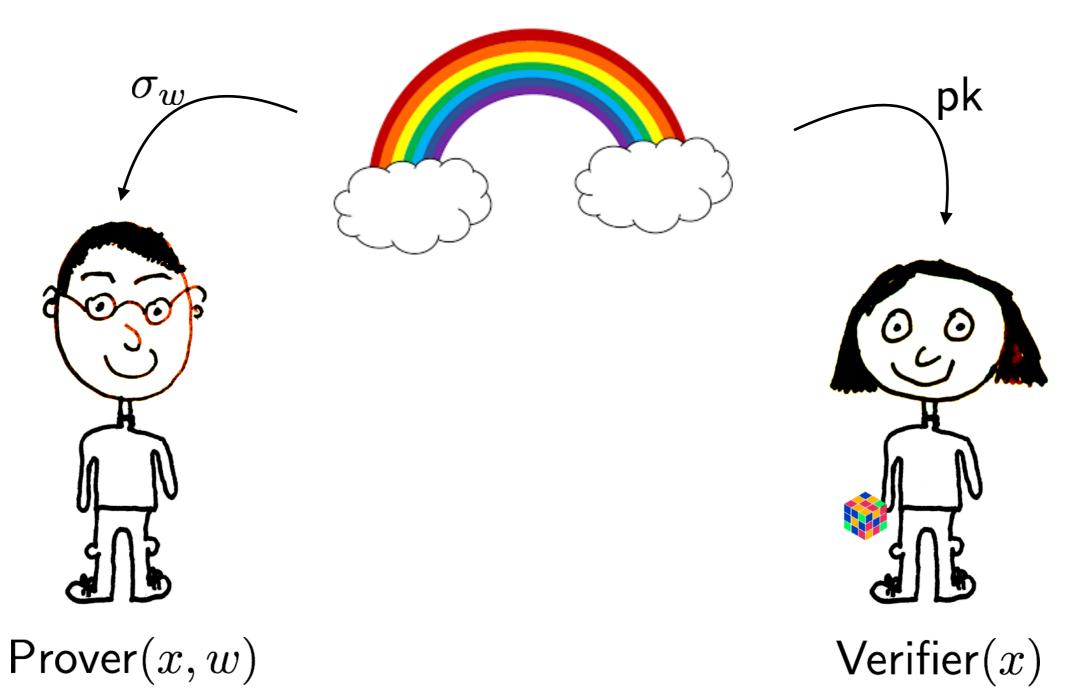
Need extra step for context-hiding

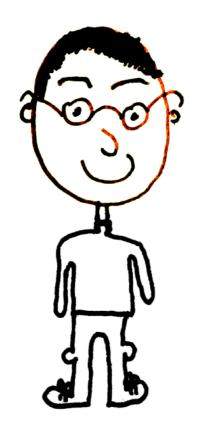


 $\mathsf{Prover}(x,w)$

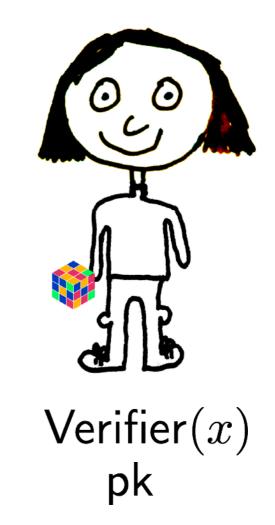


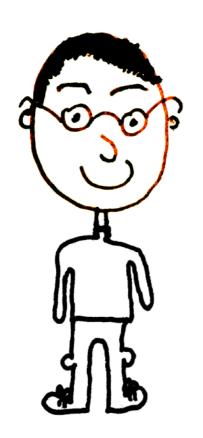
Verifier(x)





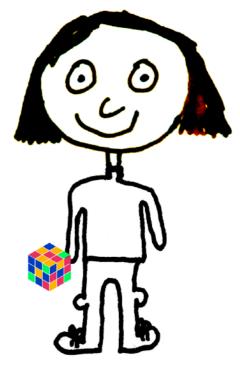
 $\frac{\mathsf{Prover}(x,w)}{\sigma_w}$





 $\frac{\mathsf{Prover}(x,w)}{\sigma_w}$

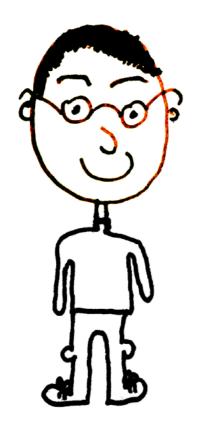
 $1 = f_x(w), \ \sigma^*_{\underline{w}, f_x}$



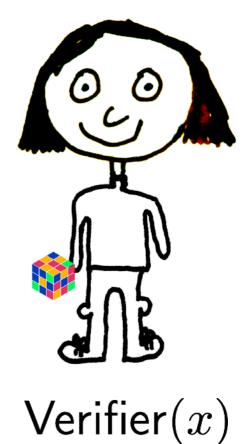
 $\begin{array}{c} \mathsf{Verifier}(x) \\ \mathsf{pk} \end{array}$

$$f_x(w) = \mathcal{R}(x, w)$$

 $1 = f_x(w), \ \sigma^*_{\underline{w}, f_x}$



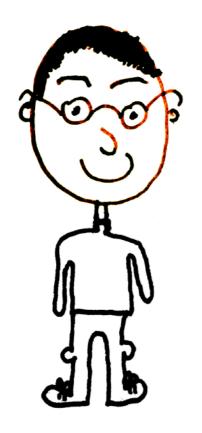
 $\frac{\mathsf{Prover}(x,w)}{\sigma_w}$



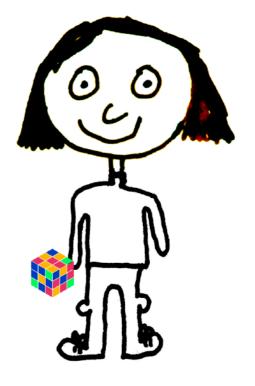
pk

$$f_x(w) = \mathcal{R}(x, w)$$

 $1 = f_x(w), \ \sigma^*_{\underline{w}, f_x}$

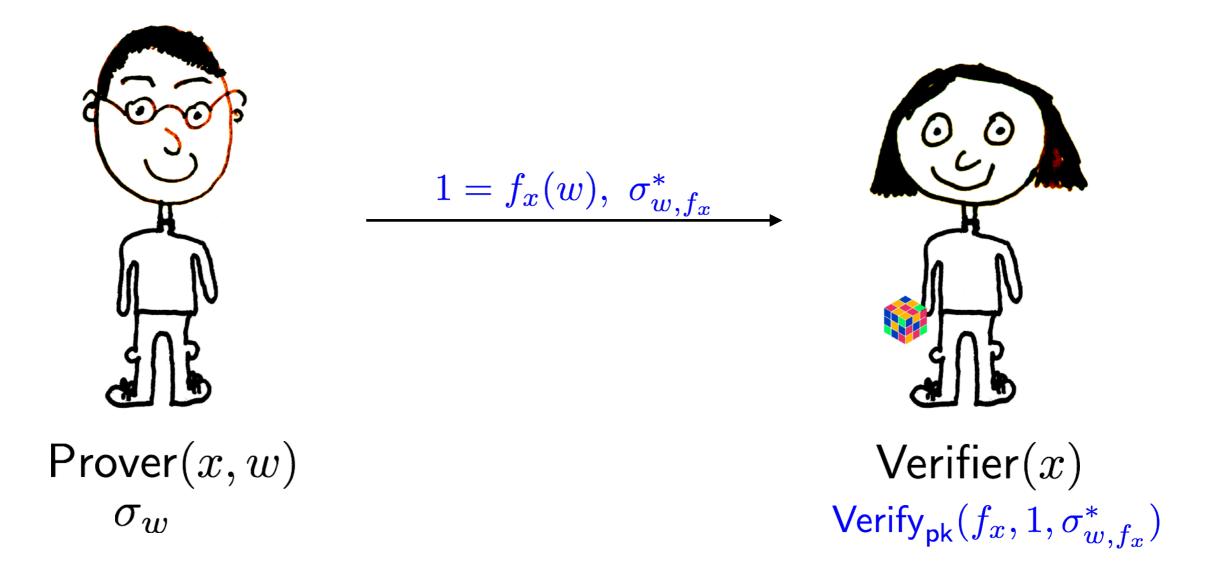


 $\frac{\mathsf{Prover}(x,w)}{\sigma_w}$



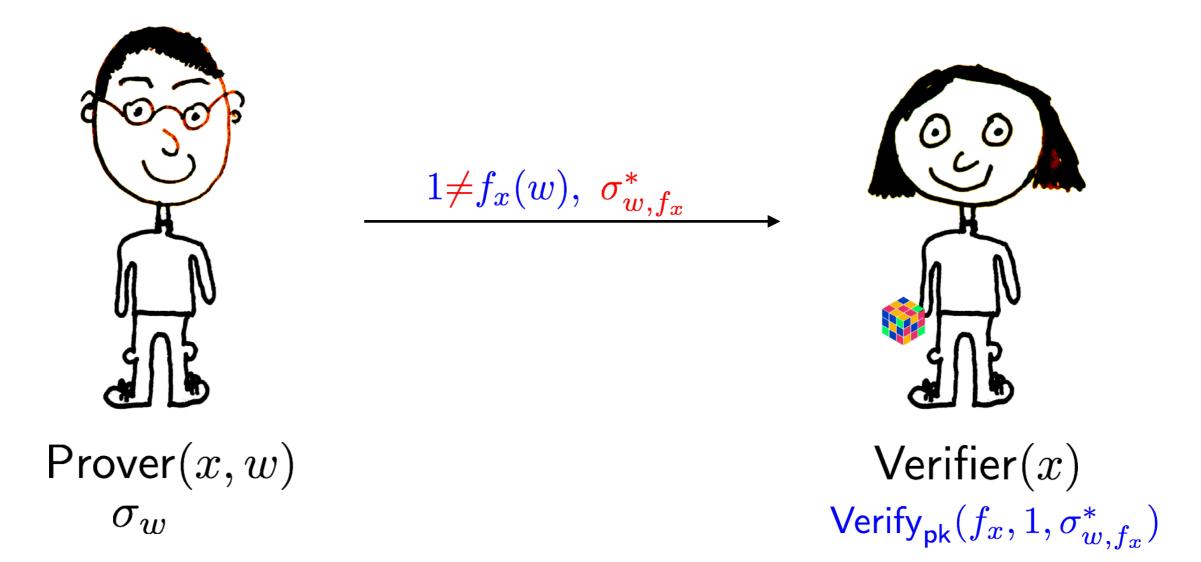
 $\frac{\text{Verifier}(x)}{\text{Verify}_{\mathsf{pk}}(f_x, 1, \sigma^*_{w, f_x})}$

$$f_x(w) = \mathcal{R}(x, w)$$



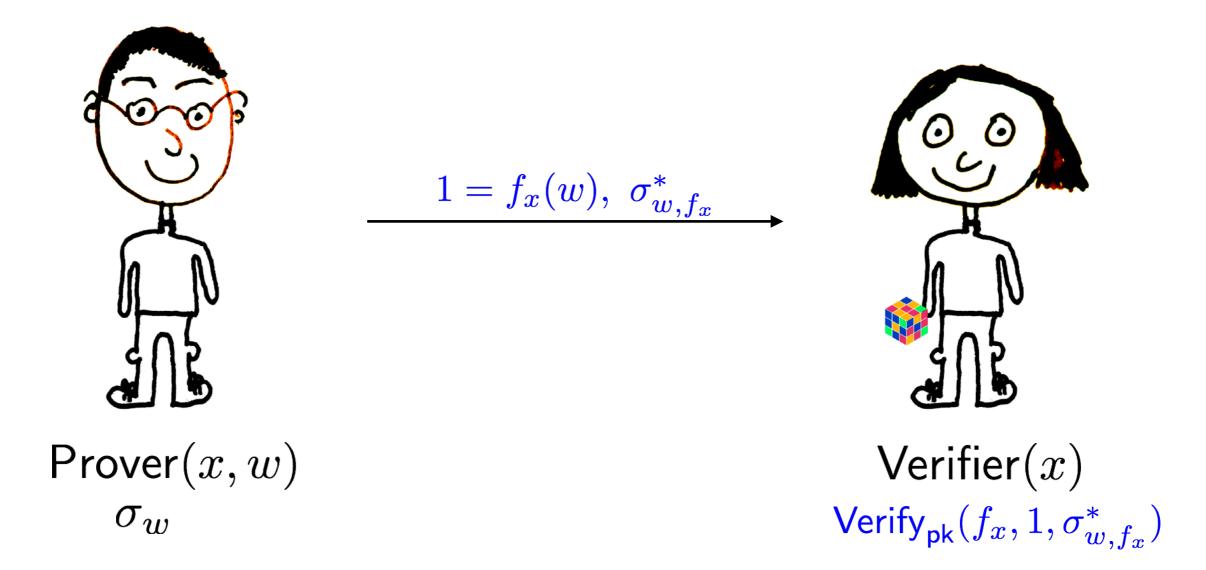
1. HS Correctness implies NIZK Completeness

$$f_x(w) = \mathcal{R}(x, w)$$



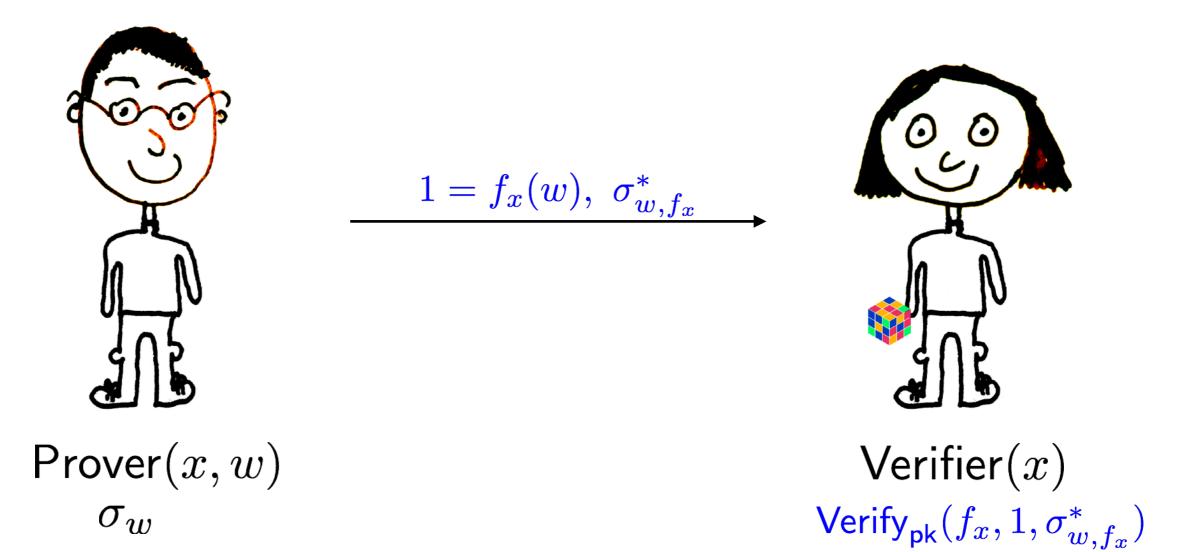
2. HS Unforgeability implies NIZK Soundness

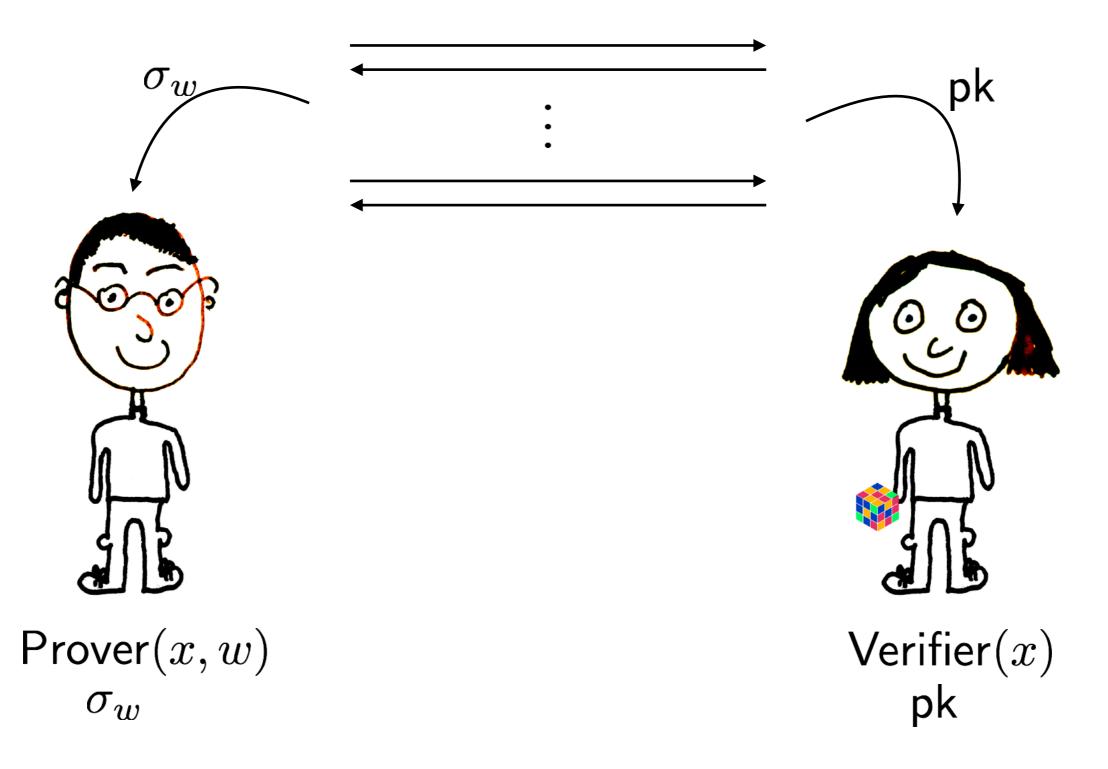
$$f_x(w) = \mathcal{R}(x, w)$$

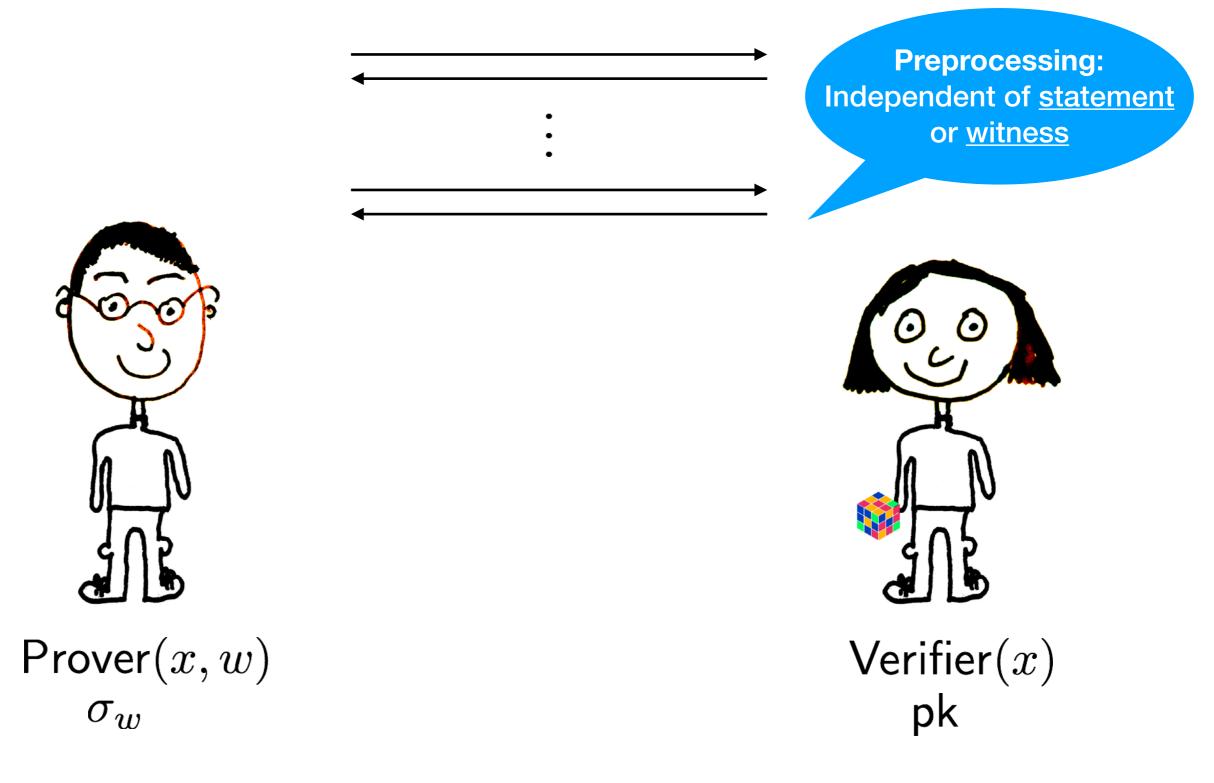


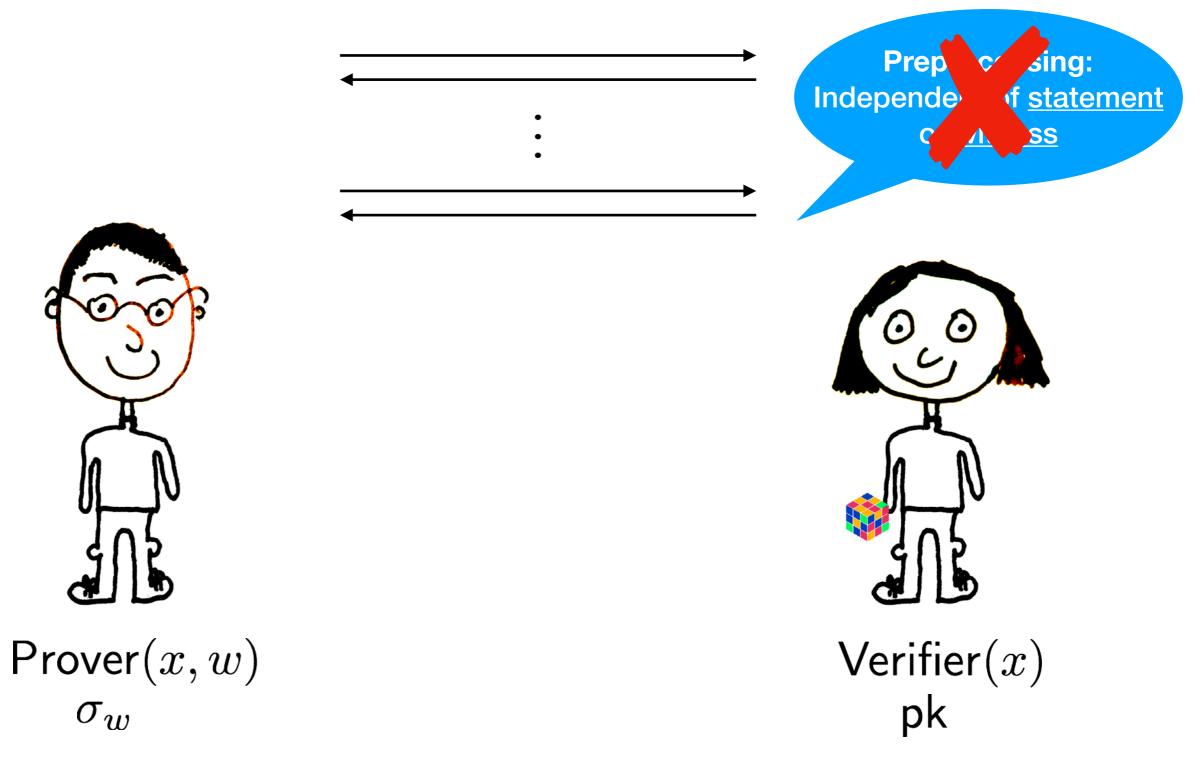
3. HS Context-Hiding implies NIZK Zero-Knowledge

$$f_x(w) = \mathcal{R}(x, w)$$

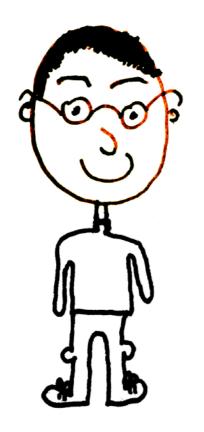




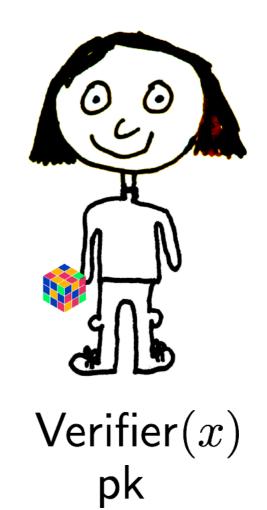




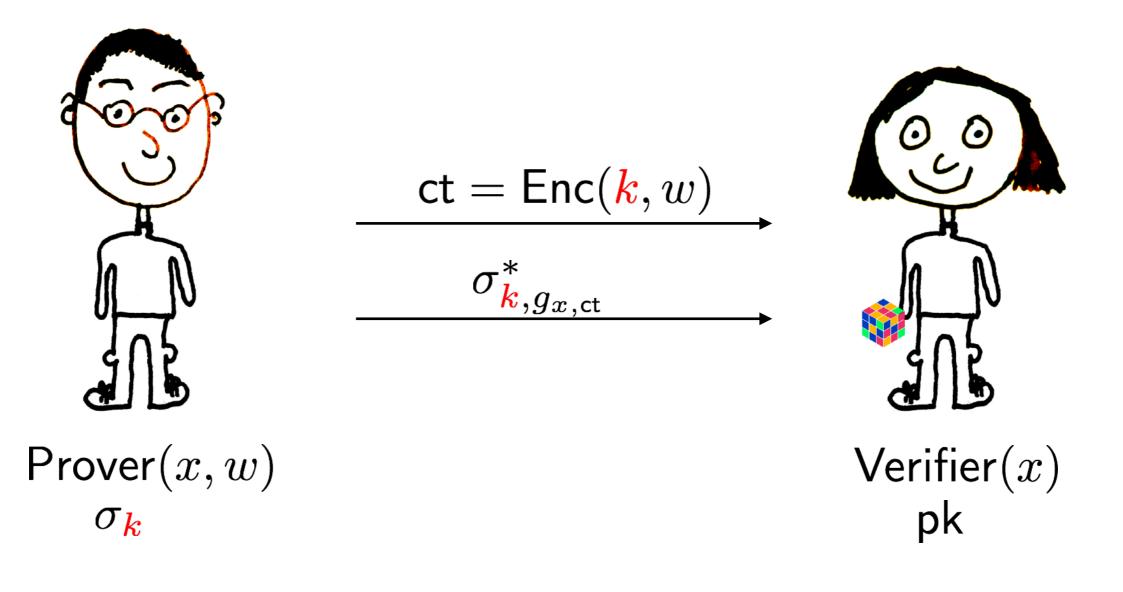
 $\mathsf{Enc}: \mathcal{K} \times \mathcal{M} \to \mathcal{C} \\ \mathsf{Dec}: \mathcal{K} \times \mathcal{C} \to \mathcal{M} \\$



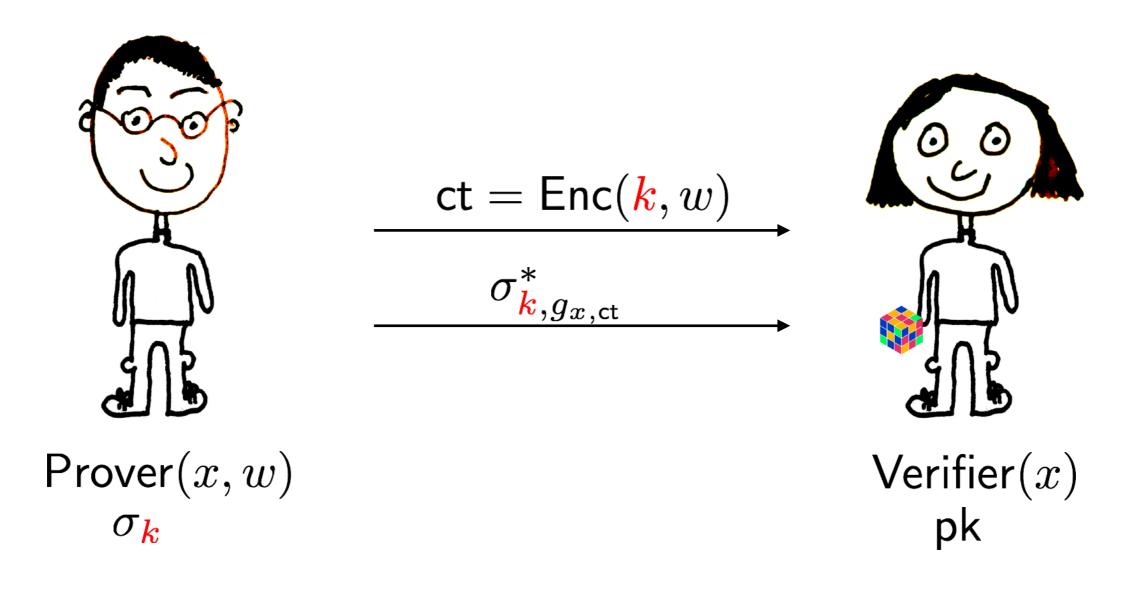
 $\frac{\mathsf{Prover}(x,w)}{\sigma_{\pmb{k}}}$



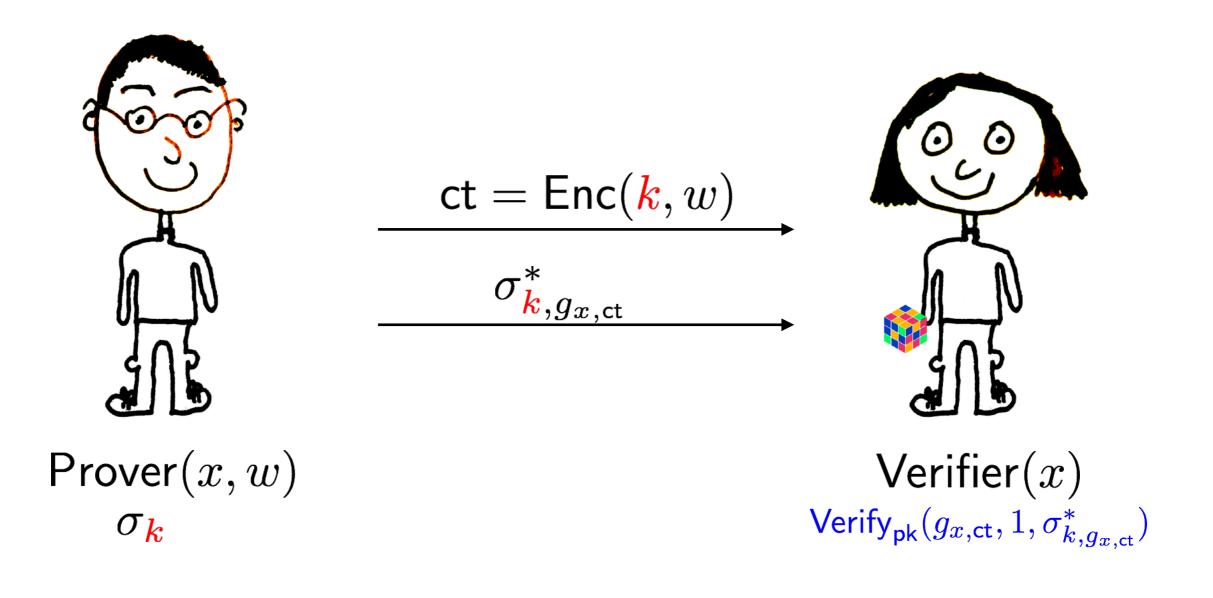
 $\mathsf{Enc}: \mathcal{K} \times \mathcal{M} \to \mathcal{C} \\ \mathsf{Dec}: \mathcal{K} \times \mathcal{C} \to \mathcal{M} \\ \mathsf{}$

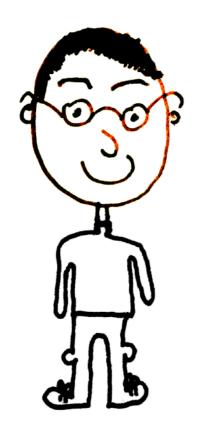


 $g_{x,\mathsf{ct}}(\mathbf{k}) = \mathcal{R}(x,\mathsf{Dec}(\mathbf{k},\mathsf{ct}))$

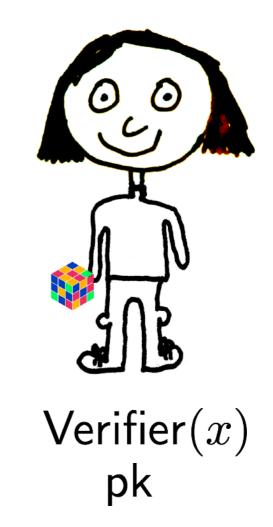


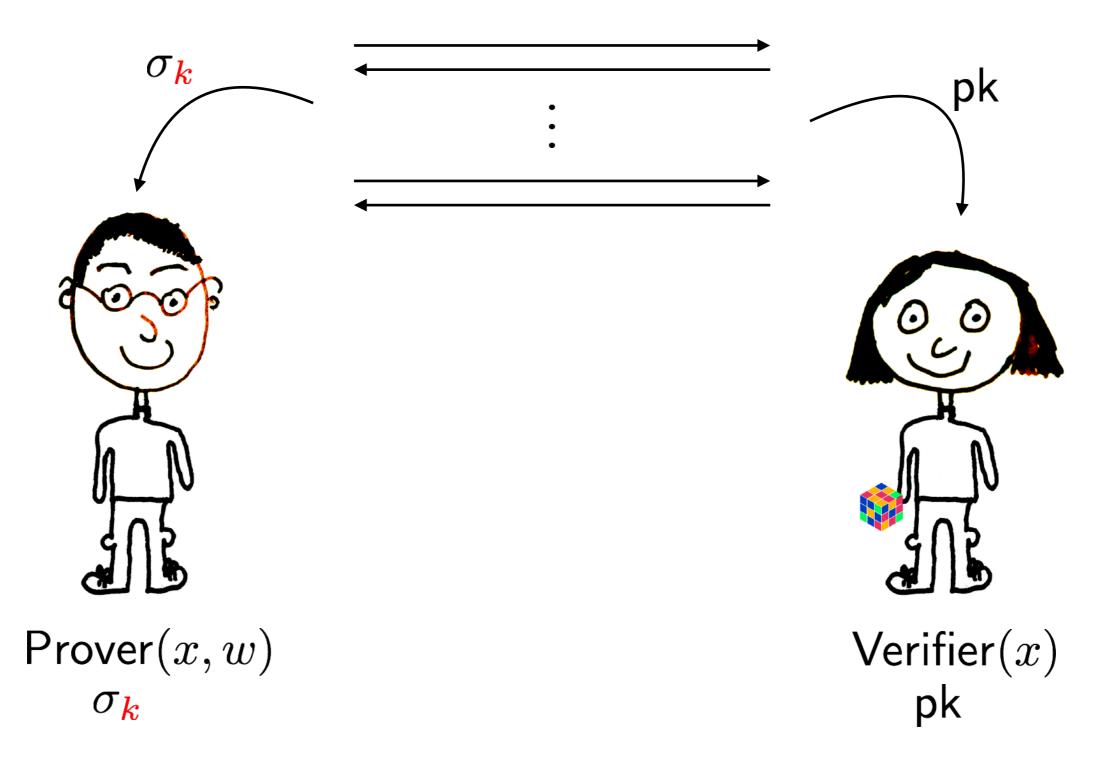
 $g_{x,\mathsf{ct}}(\mathbf{k}) = \mathcal{R}(x,\mathsf{Dec}(\mathbf{k},\mathsf{ct}))$

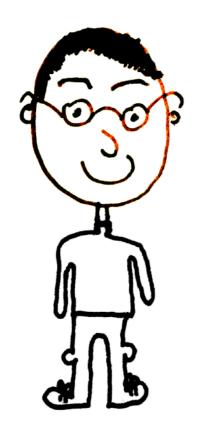




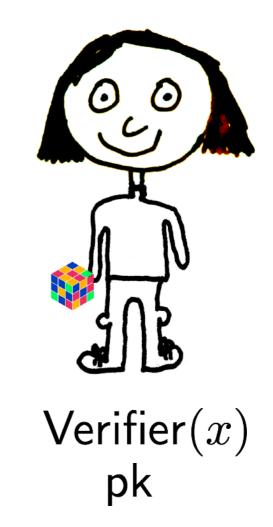
 $\frac{\mathsf{Prover}(x,w)}{\sigma_{\pmb{k}}}$

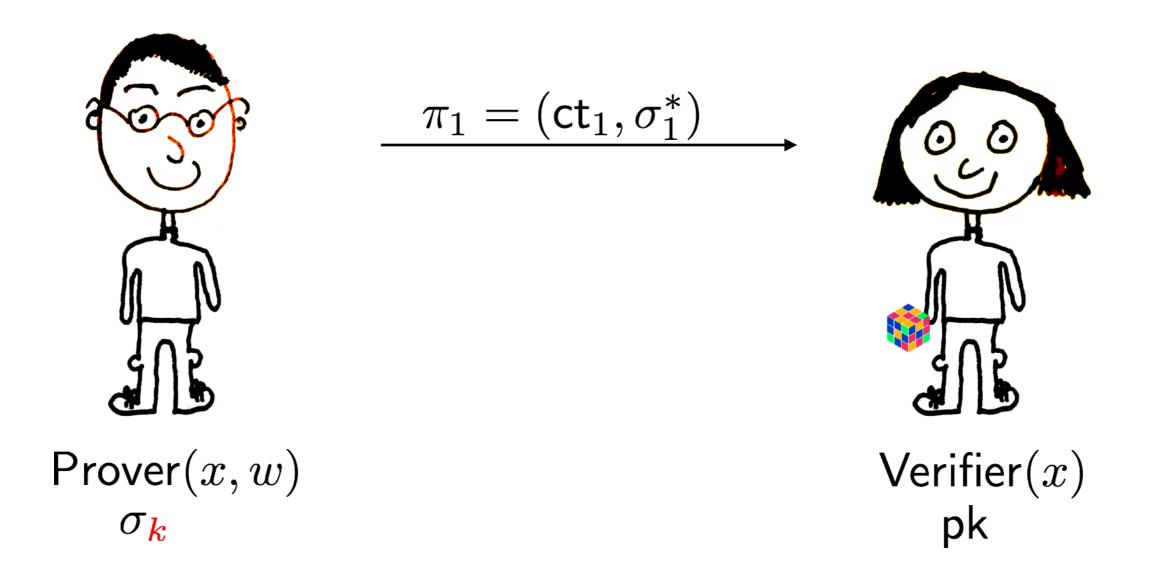




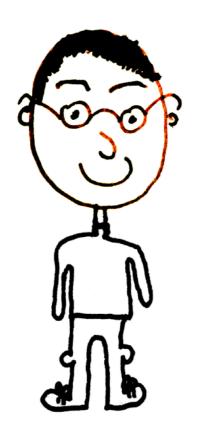


 $\frac{\mathsf{Prover}(x,w)}{\sigma_{\pmb{k}}}$



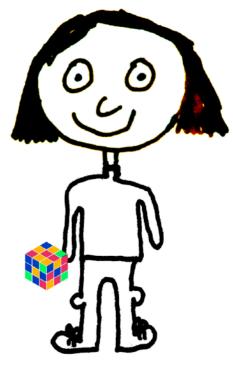


Homomorphic Signatures to NIZK?



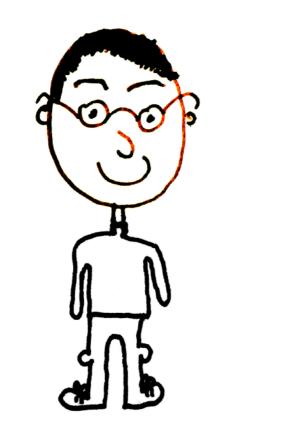
 $\frac{\mathsf{Prover}(x,w)}{\sigma_{\pmb{k}}}$

 $\pi_2 = (\mathsf{ct}_2, \sigma_2^*)$

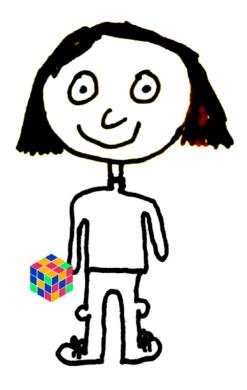


 $\begin{array}{c} \mathsf{Verifier}(x) \\ \mathsf{pk} \end{array}$

Homomorphic Signatures to NIZK?



 $\pi_3 = (\mathsf{ct}_3, \sigma_3^*)$



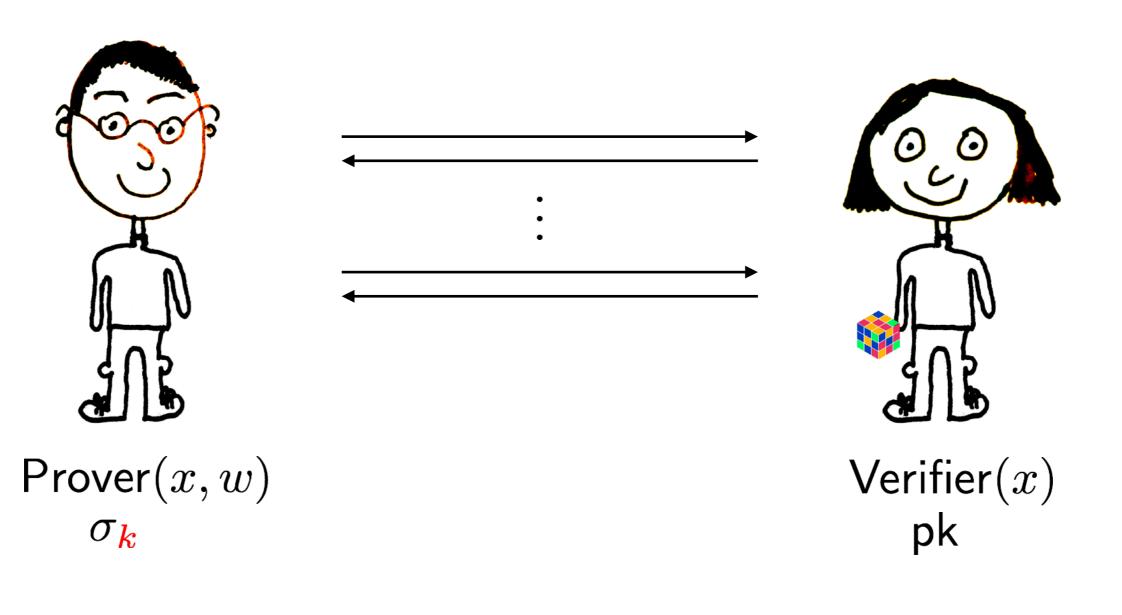
 $\frac{\mathsf{Prover}(x,w)}{\sigma_{\pmb{k}}}$

 $\begin{array}{c} \mathsf{Verifier}(x) \\ \mathsf{pk} \end{array}$

Generically: Either have to use many rounds or non-black use (costly)

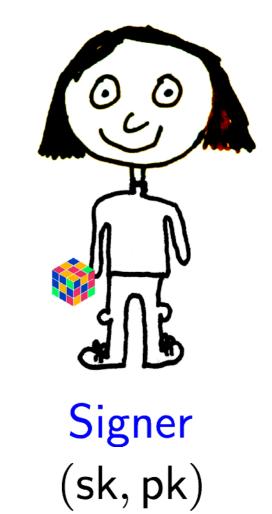
Generically: Either have to use many rounds or non-black use (costly)

Let's just construct directly!

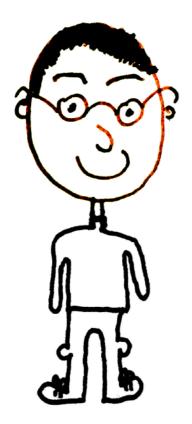


Receiver

 σ_m

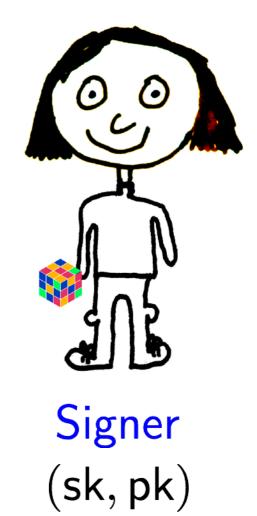


Blind Signatures?

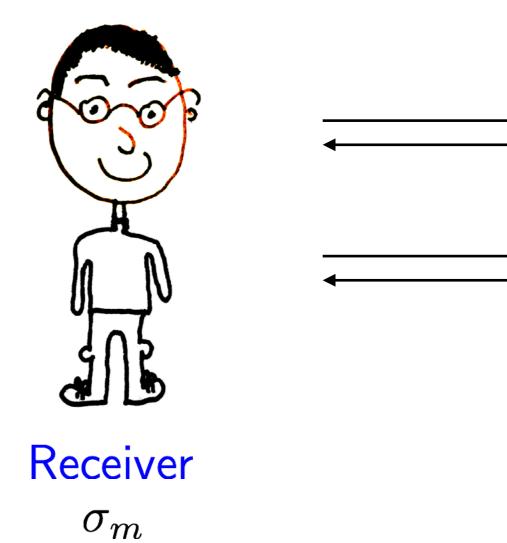


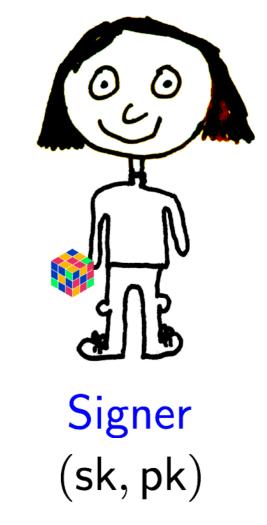
Receiver

 σ_m



Blind Signatures? Blind Homomorphic Signatures (BHS)

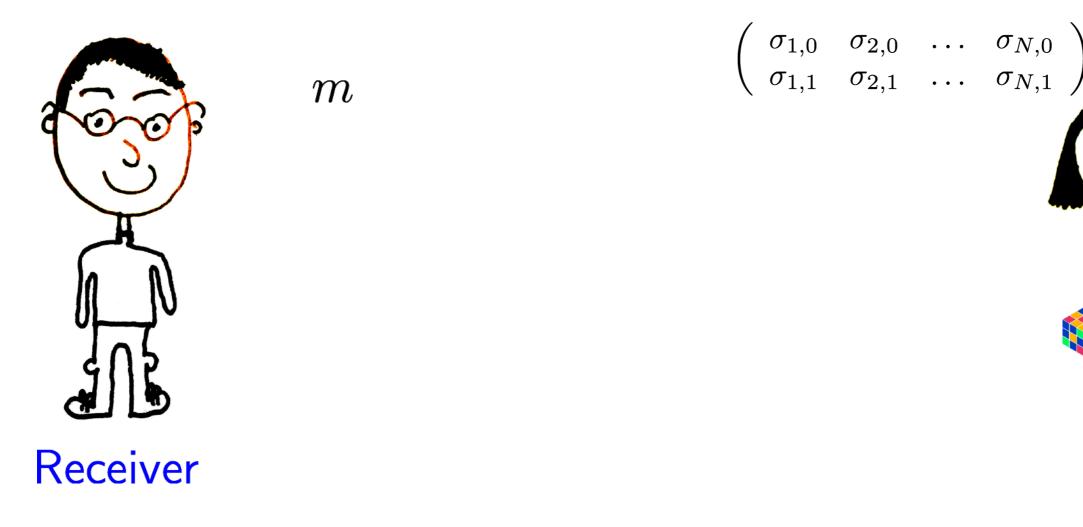




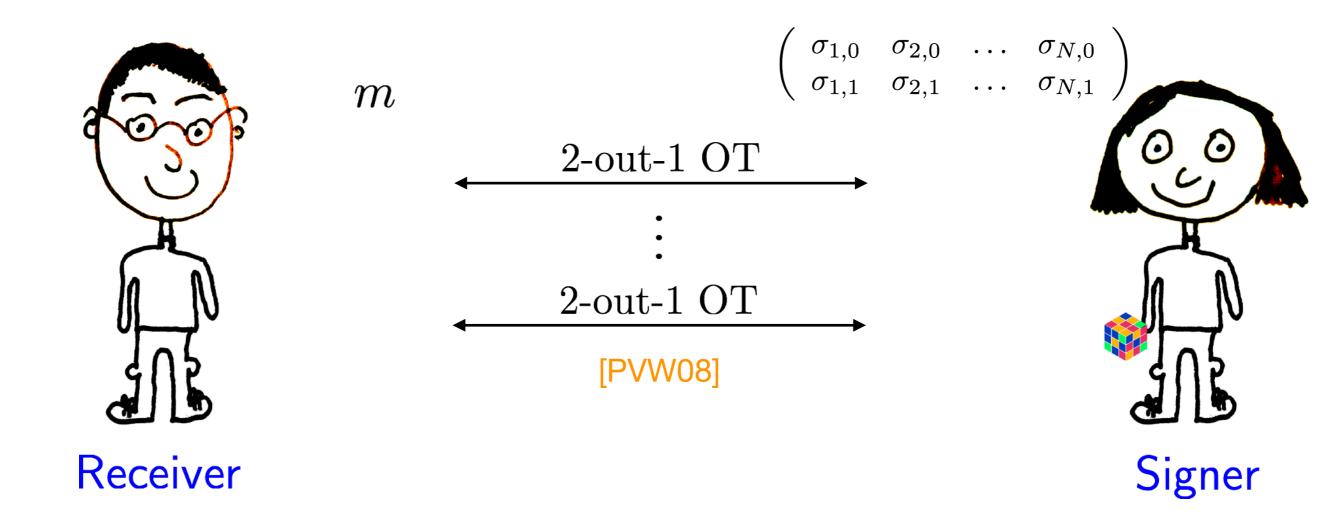
Blind Homomorphic Signatures

 $oldsymbol{O}$

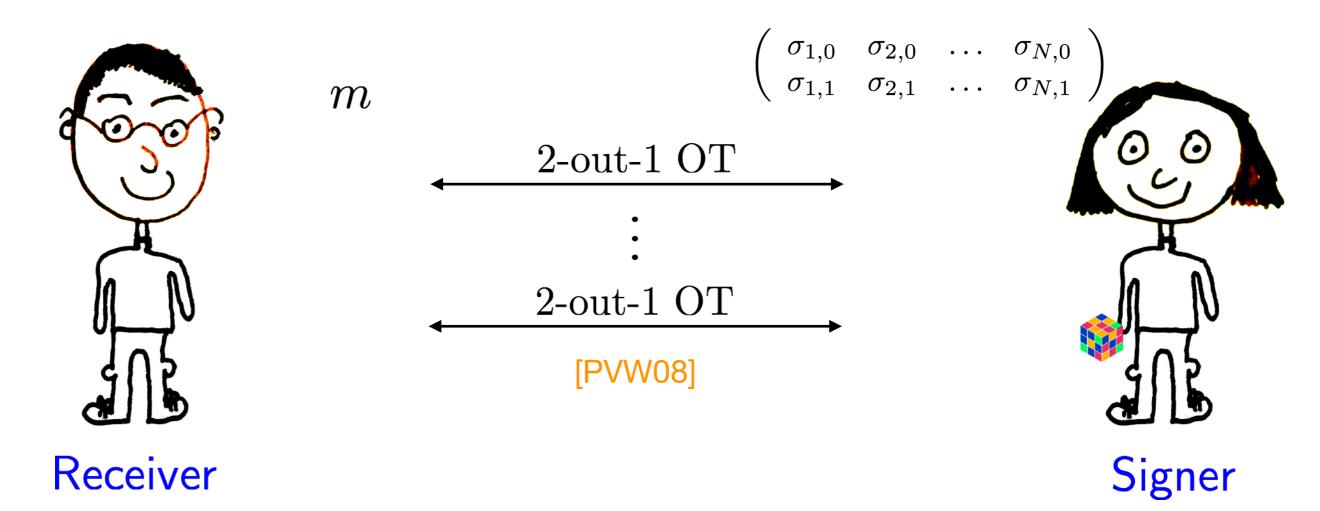
Signer



Blind Homomorphic Signatures

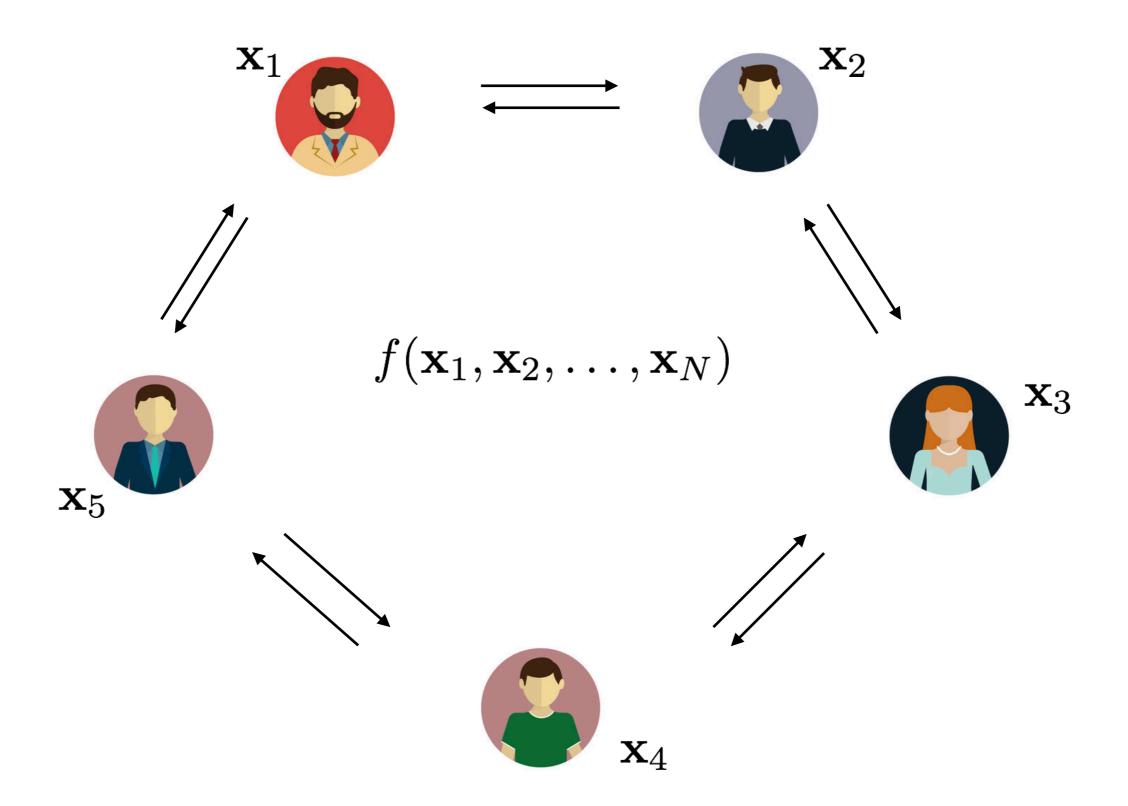


Blind Homomorphic Signatures



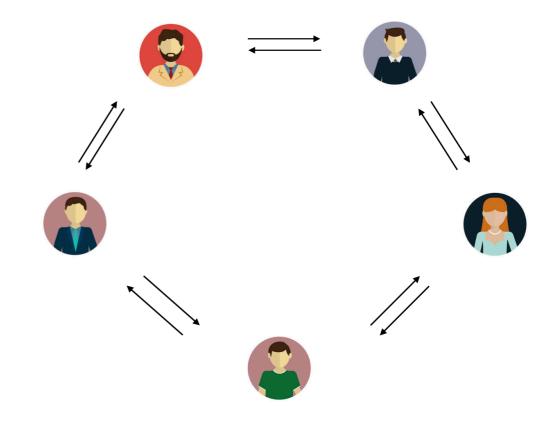
Must account for:

- Arbitrary abort attacks
- Maliciously generated signatures
- Guarantee context-hiding even when signer has signing key



GMW Compiler:

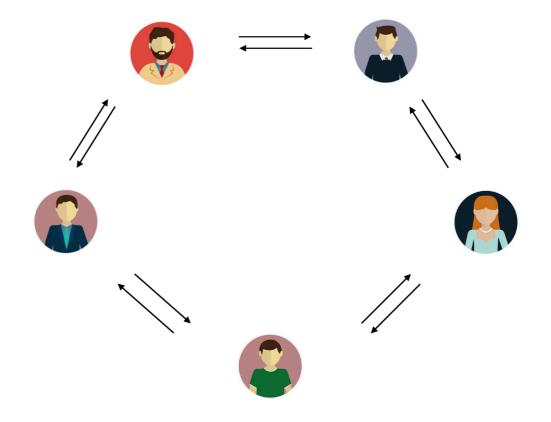
Semi-Honest to Malicious security



GMW Compiler:

Semi-Honest to Malicious security

At every step, each party proves that they are following protocol.



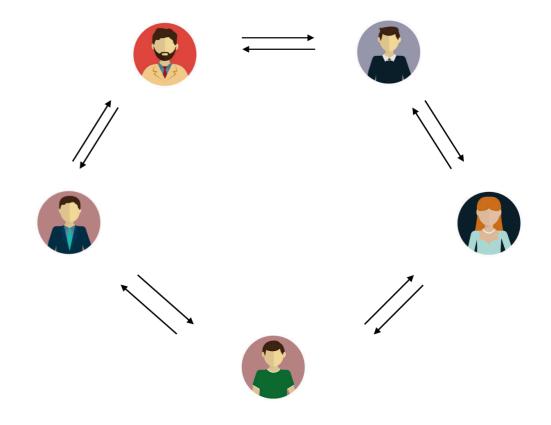
GMW Compiler:

Semi-Honest to Malicious security

At every step, each party proves that they are following protocol.

Semi-honest + NIZK = Malicious

Preserves round complexity



GMW Compiler:

Semi-Honest to Malicious security

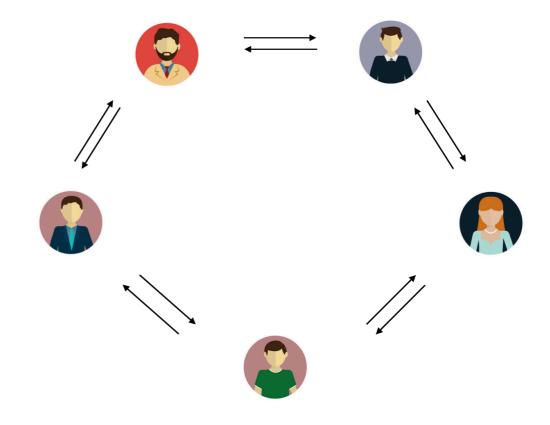
At every step, each party proves that they are following protocol.

Semi-honest + NIZK = Malicious

Preserves round complexity

Semi-honest + NIZK w/preprocessing = Malicious

Preprocessing step done once



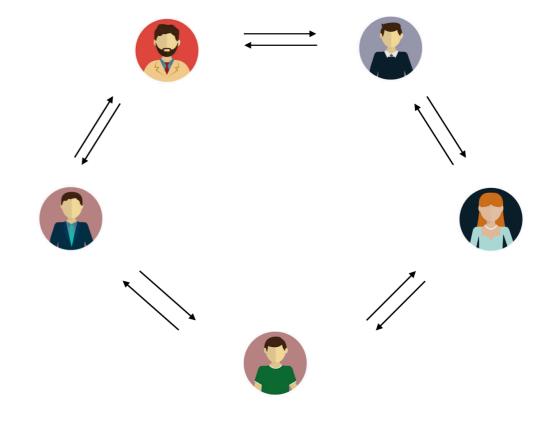
GMW Compiler:

Semi-Honest to Malicious security

At every step, each party proves that they are following protocol.

Semi-honest + NIZK = Malicious

Preserves round complexity



Semi-honest + NIZK w/preprocessing = Malicious

- Preprocessing step done once

Good: Rely on lattices + small communication size

1. LWE-based NIZK arguments in preprocessing (multi-theorem)

- 1. LWE-based NIZK arguments in preprocessing (multi-theorem)
- 2. Use Blind Homomorphic Signatures to do preprocessing

- 1. LWE-based NIZK arguments in preprocessing (multi-theorem)
- 2. Use Blind Homomorphic Signatures to do preprocessing
- 3. GMW compiler using NIZK with preprocessing

- 1. LWE-based NIZK arguments in preprocessing (multi-theorem)
- 2. Use Blind Homomorphic Signatures to do preprocessing
- 3. GMW compiler using NIZK with preprocessing

Thanks!