
LWE without Modular Reduction and Application

Pierre-Alain Fouque

Rennes Univ

IRISA, 2018–5–25

joint work with C. Delaplace, T. Espitau, J. Bootle, M. Tibouchi

1/21 ©2017 NTT Secure Platform Laboratories

Outline

The side-channel leakage of BLISS rejection sampling

LWE over the integers

2/21 ©2017 NTT Secure Platform Laboratories

Outline

The side-channel leakage of BLISS rejection sampling

LWE over the integers

3/21 ©2017 NTT Secure Platform Laboratories

BLISS Rejection Sampling

▸ The rejection sampling step leaks secret key info through
timing side-channels

▸ More precisely, leakage of two functions of the secret key
▸ exact leakage of a quadratic function of the key
▸ noisy leakage of a linear function of the key

▸ In the CCS paper: exploit the quadratic leakage
▸ requires relatively few side-channel traces
▸ heavy-weight, expensive algebraic number theory
▸ can only attack weak keys (≈ 7%)

▸ Claim: the linear leakage is not useful
▸ noisy linear system of dimension ≥ original lattice problem
▸ so this should not help

▸ This talk: actually, it is useful!
▸ much faster attack than CCS
▸ works against all keys
▸ drawback: requires more traces

4/21 ©2017 NTT Secure Platform Laboratories

BLISS Rejection Sampling

▸ The rejection sampling step leaks secret key info through
timing side-channels

▸ More precisely, leakage of two functions of the secret key
▸ exact leakage of a quadratic function of the key
▸ noisy leakage of a linear function of the key

▸ In the CCS paper: exploit the quadratic leakage
▸ requires relatively few side-channel traces
▸ heavy-weight, expensive algebraic number theory
▸ can only attack weak keys (≈ 7%)

▸ Claim: the linear leakage is not useful
▸ noisy linear system of dimension ≥ original lattice problem
▸ so this should not help

▸ This talk: actually, it is useful!
▸ much faster attack than CCS
▸ works against all keys
▸ drawback: requires more traces

4/21 ©2017 NTT Secure Platform Laboratories

BLISS Rejection Sampling

▸ The rejection sampling step leaks secret key info through
timing side-channels

▸ More precisely, leakage of two functions of the secret key
▸ exact leakage of a quadratic function of the key
▸ noisy leakage of a linear function of the key

▸ In the CCS paper: exploit the quadratic leakage
▸ requires relatively few side-channel traces
▸ heavy-weight, expensive algebraic number theory
▸ can only attack weak keys (≈ 7%)

▸ Claim: the linear leakage is not useful
▸ noisy linear system of dimension ≥ original lattice problem
▸ so this should not help

▸ This talk: actually, it is useful!
▸ much faster attack than CCS
▸ works against all keys
▸ drawback: requires more traces

4/21 ©2017 NTT Secure Platform Laboratories

BLISS Rejection Sampling

▸ The rejection sampling step leaks secret key info through
timing side-channels

▸ More precisely, leakage of two functions of the secret key
▸ exact leakage of a quadratic function of the key
▸ noisy leakage of a linear function of the key

▸ In the CCS paper: exploit the quadratic leakage
▸ requires relatively few side-channel traces
▸ heavy-weight, expensive algebraic number theory
▸ can only attack weak keys (≈ 7%)

▸ Claim: the linear leakage is not useful
▸ noisy linear system of dimension ≥ original lattice problem
▸ so this should not help

▸ This talk: actually, it is useful!
▸ much faster attack than CCS
▸ works against all keys
▸ drawback: requires more traces

4/21 ©2017 NTT Secure Platform Laboratories

BLISS Rejection Sampling

▸ The rejection sampling step leaks secret key info through
timing side-channels

▸ More precisely, leakage of two functions of the secret key
▸ exact leakage of a quadratic function of the key
▸ noisy leakage of a linear function of the key

▸ In the CCS paper: exploit the quadratic leakage
▸ requires relatively few side-channel traces
▸ heavy-weight, expensive algebraic number theory
▸ can only attack weak keys (≈ 7%)

▸ Claim: the linear leakage is not useful
▸ noisy linear system of dimension ≥ original lattice problem
▸ so this should not help

▸ This talk: actually, it is useful!
▸ much faster attack than CCS
▸ works against all keys
▸ drawback: requires more traces

4/21 ©2017 NTT Secure Platform Laboratories

BLISS: the basics

▸ One of the top contenders for postquantum signatures

▸ Introduced by Ducas, Durmus, Lepoint and Lyubashevsky at
CRYPTO’13

▸ Implementations on various platforms: desktop computers,
microcontrollers/smartcards, FPGAs

▸ Deployed in the VPN library strongSwan

5/21 ©2017 NTT Secure Platform Laboratories

BLISS: signing and verification keys

▸ Works in the cyclotomic ring R = Z[x]/(xn + 1), n = 512

▸ Computations modulo the prime q = 12289

▸ Secret key: random sparse s1, s2 ∈ R with coefficients in
{−1,0,1}

▸ Verification key: a = −s2/s1 mod q
▸ restart if s1 not invertible

6/21 ©2017 NTT Secure Platform Laboratories

BLISS: signature (simplified)

1: function Sign(µ,pk = a, sk = S = (s1, s2))
2: y1,y2 ← Dn

Z,σ ▷ Gaussian sampling
3: c← H(a ⋅ y1 + y2, µ) ▷ special hashing
4: choose a random bit b
5: z1 ← y1 + (−1)bs1c
6: z2 ← y2 + (−1)bs2c
7: continue with probability

1/(M exp(−∥Sc∥2/(2σ2)) cosh(⟨z,Sc⟩/σ2) otherwise restart

8: z†
2 ← Compress(z2)

9: return (z1, z
†
2, c)

10: end function

7/21 ©2017 NTT Secure Platform Laboratories

BLISS: signature (simplified)

1: function Sign(µ,pk = a, sk = S = (s1, s2))
2: y1,y2 ← Dn

Z,σ ▷ Gaussian sampling
3: c← H(a ⋅ y1 + y2, µ) ▷ special hashing
4: choose a random bit b
5: z1 ← y1 + (−1)bs1c
6: z2 ← y2 + (−1)bs2c
7: continue with probability

1/(M exp(−∥Sc∥2/(2σ2)) cosh(⟨z,Sc⟩/σ2) otherwise restart

8: z†
2 ← Compress(z2)

9: return (z1, z
†
2, c)

10: end function

7/21 ©2017 NTT Secure Platform Laboratories

BLISS: signature (simplified)

1: function Sign(µ,pk = a, sk = S = (s1, s2))
2: y1,y2 ← Dn

Z,σ ▷ Gaussian sampling
3: c← H(a ⋅ y1 + y2, µ) ▷ special hashing
4: choose a random bit b
5: z1 ← y1 + (−1)bs1c
6: z2 ← y2 + (−1)bs2c
7: continue with probability

1/(M exp(−∥Sc∥2/(2σ2)) cosh(⟨z,Sc⟩/σ2) otherwise restart

8: z†
2 ← Compress(z2)

9: return (z1, z
†
2, c)

10: end function

7/21 ©2017 NTT Secure Platform Laboratories

BLISS: signature (simplified)

1: function Sign(µ,pk = a, sk = S = (s1, s2))
2: y1,y2 ← Dn

Z,σ ▷ Gaussian sampling
3: c← H(a ⋅ y1 + y2, µ) ▷ special hashing
4: choose a random bit b
5: z1 ← y1 + (−1)bs1c
6: z2 ← y2 + (−1)bs2c
7: continue with probability

1/(M exp(−∥Sc∥2/(2σ2)) cosh(⟨z,Sc⟩/σ2) otherwise restart

8: z†
2 ← Compress(z2)

9: return (z1, z
†
2, c)

10: end function

7/21 ©2017 NTT Secure Platform Laboratories

BLISS: signature (simplified)

1: function Sign(µ,pk = a, sk = S = (s1, s2))
2: y1,y2 ← Dn

Z,σ ▷ Gaussian sampling
3: c← H(a ⋅ y1 + y2, µ) ▷ special hashing
4: choose a random bit b
5: z1 ← y1 + (−1)bs1c
6: z2 ← y2 + (−1)bs2c
7: continue with probability

1/(M exp(−∥Sc∥2/(2σ2)) cosh(⟨z,Sc⟩/σ2) otherwise restart

8: z†
2 ← Compress(z2)

9: return (z1, z
†
2, c)

10: end function

7/21 ©2017 NTT Secure Platform Laboratories

Overview of the CCS 2017 attack

▸ Attack on the rejection sampling
▸ cornerstone of BLISS security/efficiency

▸ Straightforward implementation of rejection sampling would be
inefficient for constrained devices: use optimized rejection
algorithm

▸ Idea of the optimization: iterated Bernoulli trials on the bits of
∥Sc∥2

▸ Side-channel leakage: can read off ∥Sc∥2 on SPA/SEMA trace!

▸ From a few of these: recover s1 ⋅ s̄1 (“relative norm” of the
secret key)

▸ Then, algebraic number theory to retrieve s1

8/21 ©2017 NTT Secure Platform Laboratories

Overview of the CCS 2017 attack

▸ Attack on the rejection sampling
▸ cornerstone of BLISS security/efficiency

▸ Straightforward implementation of rejection sampling would be
inefficient for constrained devices: use optimized rejection
algorithm

▸ Idea of the optimization: iterated Bernoulli trials on the bits of
∥Sc∥2

▸ Side-channel leakage: can read off ∥Sc∥2 on SPA/SEMA trace!

▸ From a few of these: recover s1 ⋅ s̄1 (“relative norm” of the
secret key)

▸ Then, algebraic number theory to retrieve s1

8/21 ©2017 NTT Secure Platform Laboratories

Overview of the CCS 2017 attack

▸ Attack on the rejection sampling
▸ cornerstone of BLISS security/efficiency

▸ Straightforward implementation of rejection sampling would be
inefficient for constrained devices: use optimized rejection
algorithm

▸ Idea of the optimization: iterated Bernoulli trials on the bits of
∥Sc∥2

▸ Side-channel leakage: can read off ∥Sc∥2 on SPA/SEMA trace!

▸ From a few of these: recover s1 ⋅ s̄1 (“relative norm” of the
secret key)

▸ Then, algebraic number theory to retrieve s1

8/21 ©2017 NTT Secure Platform Laboratories

Overview of the CCS 2017 attack

▸ Attack on the rejection sampling
▸ cornerstone of BLISS security/efficiency

▸ Straightforward implementation of rejection sampling would be
inefficient for constrained devices: use optimized rejection
algorithm

▸ Idea of the optimization: iterated Bernoulli trials on the bits of
∥Sc∥2

▸ Side-channel leakage: can read off ∥Sc∥2 on SPA/SEMA trace!

▸ From a few of these: recover s1 ⋅ s̄1 (“relative norm” of the
secret key)

▸ Then, algebraic number theory to retrieve s1

8/21 ©2017 NTT Secure Platform Laboratories

Overview of the CCS 2017 attack

▸ Attack on the rejection sampling
▸ cornerstone of BLISS security/efficiency

▸ Straightforward implementation of rejection sampling would be
inefficient for constrained devices: use optimized rejection
algorithm

▸ Idea of the optimization: iterated Bernoulli trials on the bits of
∥Sc∥2

▸ Side-channel leakage: can read off ∥Sc∥2 on SPA/SEMA trace!

▸ From a few of these: recover s1 ⋅ s̄1 (“relative norm” of the
secret key)

▸ Then, algebraic number theory to retrieve s1

8/21 ©2017 NTT Secure Platform Laboratories

Overview of the CCS 2017 attack

▸ Attack on the rejection sampling
▸ cornerstone of BLISS security/efficiency

▸ Straightforward implementation of rejection sampling would be
inefficient for constrained devices: use optimized rejection
algorithm

▸ Idea of the optimization: iterated Bernoulli trials on the bits of
∥Sc∥2

▸ Side-channel leakage: can read off ∥Sc∥2 on SPA/SEMA trace!

▸ From a few of these: recover s1 ⋅ s̄1 (“relative norm” of the
secret key)

▸ Then, algebraic number theory to retrieve s1

8/21 ©2017 NTT Secure Platform Laboratories

BLISS rejection sampling

1: function SampleBernExp(x)
2: for i = 0 to ` − 1 do
3: if xi = 1 then
4: Sample a ←Bci

5: if a = 0 then return 0
6: end if
7: end for
8: return 1
9: end function ▷ x = K − ∥Sc∥2

1: function SampleBern-
Cosh(x)

2: Sample a ←Bexp(−x/f)

3: if a = 1 then return 1
4: Sample b ←B1/2

5: if b = 1 then restart
6: Sample c ←Bexp(−x/f)

7: if c = 1 then restart
8: return 0
9: end function ▷ x = 2 ⋅ ⟨z,Sc⟩

Sampling algorithms for the distributions Bexp(−x/f) and

B1/ cosh(x/f) (ci = 2i/f precomputed)

9/21 ©2017 NTT Secure Platform Laboratories

BLISS rejection sampling

1: function SampleBernExp(x)
2: for i = 0 to ` − 1 do
3: if xi = 1 then
4: Sample a ←Bci

5: if a = 0 then return 0
6: end if
7: end for
8: return 1
9: end function ▷ x = K − ∥Sc∥2

1: function SampleBern-
Cosh(x)

2: Sample a ←Bexp(−x/f)

3: if a = 1 then return 1
4: Sample b ←B1/2

5: if b = 1 then restart
6: Sample c ←Bexp(−x/f)

7: if c = 1 then restart
8: return 0
9: end function ▷ x = 2 ⋅ ⟨z,Sc⟩

Sampling algorithms for the distributions Bexp(−x/f) and

B1/ cosh(x/f) (ci = 2i/f precomputed)

9/21 ©2017 NTT Secure Platform Laboratories

Experimental leakage

EMA trace of BLISS rejection sampling on 8-bit AVR for norm
∥Sc∥2 = 14404. One reads the value:
K − ∥Sc∥2 = 46539 − 14404 = 32135 = 1111101100001112

-1.5

-1

-0.5

0

0.5

1

1.5

2

150000 200000 250000 300000 350000 400000

1 1 1

0000

1 1

0

1 1 1 1 1

10/21 ©2017 NTT Secure Platform Laboratories

What about the inner product leakage? (I)

▸ Recall the rejection sampling probability of BLISS signing:

1/
⎛
⎝
M exp(− ∥Sc∥2

2σ2
) cosh(⟨z,Sc⟩

σ2
)
⎞
⎠
,

▸ The exp part of the rejection sampling leaks ∥Sc∥2 and
ultimately the relative norm of s1 and s2: used in CCS17

▸ Can’t we use the cosh part instead? It directly leaks:

⟨z1, s1c⟩ + ⟨z2, s2c⟩

▸ If we know (c, z1, z2), this gives a linear relation on the secret:
recover everything from around 1024 signatures without
breaking a sweat!

11/21 ©2017 NTT Secure Platform Laboratories

What about the inner product leakage? (I)

▸ Recall the rejection sampling probability of BLISS signing:

1/
⎛
⎝
M exp(− ∥Sc∥2

2σ2
) cosh(⟨z,Sc⟩

σ2
)
⎞
⎠
,

▸ The exp part of the rejection sampling leaks ∥Sc∥2 and
ultimately the relative norm of s1 and s2: used in CCS17

▸ Can’t we use the cosh part instead? It directly leaks:

⟨z1, s1c⟩ + ⟨z2, s2c⟩

▸ If we know (c, z1, z2), this gives a linear relation on the secret:
recover everything from around 1024 signatures without
breaking a sweat!

11/21 ©2017 NTT Secure Platform Laboratories

What about the inner product leakage? (I)

▸ Recall the rejection sampling probability of BLISS signing:

1/
⎛
⎝
M exp(− ∥Sc∥2

2σ2
) cosh(⟨z,Sc⟩

σ2
)
⎞
⎠
,

▸ The exp part of the rejection sampling leaks ∥Sc∥2 and
ultimately the relative norm of s1 and s2: used in CCS17

▸ Can’t we use the cosh part instead? It directly leaks:

⟨z1, s1c⟩ + ⟨z2, s2c⟩

▸ If we know (c, z1, z2), this gives a linear relation on the secret:
recover everything from around 1024 signatures without
breaking a sweat!

11/21 ©2017 NTT Secure Platform Laboratories

What about the inner product leakage? (I)

▸ Recall the rejection sampling probability of BLISS signing:

1/
⎛
⎝
M exp(− ∥Sc∥2

2σ2
) cosh(⟨z,Sc⟩

σ2
)
⎞
⎠
,

▸ The exp part of the rejection sampling leaks ∥Sc∥2 and
ultimately the relative norm of s1 and s2: used in CCS17

▸ Can’t we use the cosh part instead? It directly leaks:

⟨z1, s1c⟩ + ⟨z2, s2c⟩

▸ If we know (c, z1, z2), this gives a linear relation on the secret:
recover everything from around 1024 signatures without
breaking a sweat!

11/21 ©2017 NTT Secure Platform Laboratories

What about the inner product leakage? (II)

▸ Problem: signatures do not contain z2, but only a compressed

variant z†
2, and compression is lossy

▸ only obtain noisy linear system in the secret key

▸ First reaction: like LWE in twice the original dimension, so
probably hopeless

▸ Second opinion: not hopeless at all, because there is no
modular reduction

12/21 ©2017 NTT Secure Platform Laboratories

What about the inner product leakage? (II)

▸ Problem: signatures do not contain z2, but only a compressed

variant z†
2, and compression is lossy

▸ only obtain noisy linear system in the secret key

▸ First reaction: like LWE in twice the original dimension, so
probably hopeless

▸ Second opinion: not hopeless at all, because there is no
modular reduction

12/21 ©2017 NTT Secure Platform Laboratories

What about the inner product leakage? (II)

▸ Problem: signatures do not contain z2, but only a compressed

variant z†
2, and compression is lossy

▸ only obtain noisy linear system in the secret key

▸ First reaction: like LWE in twice the original dimension, so
probably hopeless

▸ Second opinion: not hopeless at all, because there is no
modular reduction

12/21 ©2017 NTT Secure Platform Laboratories

More precise description of the leakage

⟨z1, s1c⟩ + ⟨z2, s2c⟩= ⟨z1, s1c⟩ + ⟨2dz†
2 + (z2 − 2dz†

2), s2c⟩
= ⟨z1c∗, s1⟩ + ⟨2dz†

2c∗, s2⟩ + ⟨z2 − 2dz†
2 , s2c⟩

b= ⟨a, s⟩ + e

where

s = (s1, s2) (secret key)

a = (z1c∗,2dz†
2c∗) (known from sig.)

b = ⟨z1, s1c⟩ + ⟨z2, s2c⟩ (leakage)

e = ⟨z2 − 2dz†
2 , s2c⟩ (small unknown value)

13/21 ©2017 NTT Secure Platform Laboratories

More precise description of the leakage

⟨z1, s1c⟩ + ⟨z2, s2c⟩= ⟨z1, s1c⟩ + ⟨2dz†
2 + (z2 − 2dz†

2), s2c⟩
= ⟨z1c∗, s1⟩ + ⟨2dz†

2c∗, s2⟩ + ⟨z2 − 2dz†
2 , s2c⟩

b= ⟨a, s⟩ + e

where

s = (s1, s2) (secret key)

a = (z1c∗,2dz†
2c∗) (known from sig.)

b = ⟨z1, s1c⟩ + ⟨z2, s2c⟩ (leakage)

e = ⟨z2 − 2dz†
2 , s2c⟩ (small unknown value)

13/21 ©2017 NTT Secure Platform Laboratories

Outline

The side-channel leakage of BLISS rejection sampling

LWE over the integers

14/21 ©2017 NTT Secure Platform Laboratories

The Integer LWE problem

▸ s secret vector in Zn

▸ χa, χe probability distributions over Z

Integer-LWE Problem

Given m samples (ai ,bi) of the form:

ai ← χn
a bi = ⟨a, s⟩ + e (e ← χe)

find s.

Like LWE, without the modular reduction but Var[χe]/Var[χa]
polynomial in n.
Can we solve this efficiently?

15/21 ©2017 NTT Secure Platform Laboratories

Our main result

Integer-LWE is easy

Suppose χa, χe are centered distributions of std. dev. σa, σe . We
show that we can recover s with m samples for

m = O (log n ⋅ (σe
σa

)
2
) .

▸ In particular, unless σe is exponentially larger than σa, we can
always recover s with poly-many samples

▸ Rigorous results for χa, χe subgaussian distributions

▸ Lower bound: m = Ω((σeσa)
2
)

16/21 ©2017 NTT Secure Platform Laboratories

Lower Bound on integer-LWE

Let Ds,χa,χe = {(a, ⟨a, s⟩ + e) ∶ a← χn
a , e ← χe}. Given s ≠ s′ ∈ Zn,

how close are the distributions Ds,χa,χe and Ds′,χa,χe ?

▸ We show that when χe is either uniform or Gaussian, the
statistical distance is bounded by O(σaσe ∥s − s′∥)

▸ Consequently, we need Ω(1
∥s−s′∥2

(σeσa)
2) samples to distinguish

those distributions with constant success probability

17/21 ©2017 NTT Secure Platform Laboratories

The least squares approach (I)

▸ Given m > n integer-LWE samples, we can put them in matrix
form:

A ∈ Zm×n b = As + e (b,e ∈ Zm)
▸ Overdetermined linear system with errors. Least squares: find

s̃ ∈ Rn minimizing ∥As̃ − b∥22
▸ Solution:

s̃ = (ATA)−1ATb

▸ Only makes sense if ATA invertible, but this should be the case
for large m. Indeed: ATA = (⟨ai ,aj⟩)1≤i ,j≤n ∈ Z

n×n

▸ Law of large numbers: ATA ≈ E [ATA]. Now:

E[⟨ai ,aj⟩] =
m

∑
k=1

E [aikajk] =
⎧⎪⎪⎨⎪⎪⎩

m ⋅ E [χa]2 = 0 i ≠ j

m ⋅ E [χ2
a] = mσ2a i = j

▸ Hence, ATA ≈ mσ2a ⋅ In for large m

18/21 ©2017 NTT Secure Platform Laboratories

The least squares approach (I)

▸ Given m > n integer-LWE samples, we can put them in matrix
form:

A ∈ Zm×n b = As + e (b,e ∈ Zm)
▸ Overdetermined linear system with errors. Least squares: find

s̃ ∈ Rn minimizing ∥As̃ − b∥22
▸ Solution:

s̃ = (ATA)−1ATb

▸ Only makes sense if ATA invertible, but this should be the case
for large m. Indeed: ATA = (⟨ai ,aj⟩)1≤i ,j≤n ∈ Z

n×n

▸ Law of large numbers: ATA ≈ E [ATA]. Now:

E[⟨ai ,aj⟩] =
m

∑
k=1

E [aikajk] =
⎧⎪⎪⎨⎪⎪⎩

m ⋅ E [χa]2 = 0 i ≠ j

m ⋅ E [χ2
a] = mσ2a i = j

▸ Hence, ATA ≈ mσ2a ⋅ In for large m

18/21 ©2017 NTT Secure Platform Laboratories

The least squares approach (I)

▸ Given m > n integer-LWE samples, we can put them in matrix
form:

A ∈ Zm×n b = As + e (b,e ∈ Zm)
▸ Overdetermined linear system with errors. Least squares: find

s̃ ∈ Rn minimizing ∥As̃ − b∥22
▸ Solution:

s̃ = (ATA)−1ATb

▸ Only makes sense if ATA invertible, but this should be the case
for large m. Indeed: ATA = (⟨ai ,aj⟩)1≤i ,j≤n ∈ Z

n×n

▸ Law of large numbers: ATA ≈ E [ATA]. Now:

E[⟨ai ,aj⟩] =
m

∑
k=1

E [aikajk] =
⎧⎪⎪⎨⎪⎪⎩

m ⋅ E [χa]2 = 0 i ≠ j

m ⋅ E [χ2
a] = mσ2a i = j

▸ Hence, ATA ≈ mσ2a ⋅ In for large m

18/21 ©2017 NTT Secure Platform Laboratories

The least squares approach (I)

▸ Given m > n integer-LWE samples, we can put them in matrix
form:

A ∈ Zm×n b = As + e (b,e ∈ Zm)
▸ Overdetermined linear system with errors. Least squares: find

s̃ ∈ Rn minimizing ∥As̃ − b∥22
▸ Solution:

s̃ = (ATA)−1ATb

▸ Only makes sense if ATA invertible, but this should be the case
for large m. Indeed: ATA = (⟨ai ,aj⟩)1≤i ,j≤n ∈ Z

n×n

▸ Law of large numbers: ATA ≈ E [ATA]. Now:

E[⟨ai ,aj⟩] =
m

∑
k=1

E [aikajk] =
⎧⎪⎪⎨⎪⎪⎩

m ⋅ E [χa]2 = 0 i ≠ j

m ⋅ E [χ2
a] = mσ2a i = j

▸ Hence, ATA ≈ mσ2a ⋅ In for large m

18/21 ©2017 NTT Secure Platform Laboratories

The least squares approach (I)

▸ Given m > n integer-LWE samples, we can put them in matrix
form:

A ∈ Zm×n b = As + e (b,e ∈ Zm)
▸ Overdetermined linear system with errors. Least squares: find

s̃ ∈ Rn minimizing ∥As̃ − b∥22
▸ Solution:

s̃ = (ATA)−1ATb

▸ Only makes sense if ATA invertible, but this should be the case
for large m. Indeed: ATA = (⟨ai ,aj⟩)1≤i ,j≤n ∈ Z

n×n

▸ Law of large numbers: ATA ≈ E [ATA]. Now:

E[⟨ai ,aj⟩] =
m

∑
k=1

E [aikajk] =
⎧⎪⎪⎨⎪⎪⎩

m ⋅ E [χa]2 = 0 i ≠ j

m ⋅ E [χ2
a] = mσ2a i = j

▸ Hence, ATA ≈ mσ2a ⋅ In for large m

18/21 ©2017 NTT Secure Platform Laboratories

The least squares approach (I)

▸ Given m > n integer-LWE samples, we can put them in matrix
form:

A ∈ Zm×n b = As + e (b,e ∈ Zm)
▸ Overdetermined linear system with errors. Least squares: find

s̃ ∈ Rn minimizing ∥As̃ − b∥22
▸ Solution:

s̃ = (ATA)−1ATb

▸ Only makes sense if ATA invertible, but this should be the case
for large m. Indeed: ATA = (⟨ai ,aj⟩)1≤i ,j≤n ∈ Z

n×n

▸ Law of large numbers: ATA ≈ E [ATA]. Now:

E[⟨ai ,aj⟩] =
m

∑
k=1

E [aikajk] =
⎧⎪⎪⎨⎪⎪⎩

m ⋅ E [χa]2 = 0 i ≠ j

m ⋅ E [χ2
a] = mσ2a i = j

▸ Hence, ATA ≈ mσ2a ⋅ In for large m

18/21 ©2017 NTT Secure Platform Laboratories

The least squares approach (II)

▸ Claim: s̃ is an approximation of s

▸ The difference is a function of A and e:

s̃ − s = (ATA)−1ATb − s

= (ATA)−1AT(As + e) − s = (ATA)−1ATe

▸ Thus, we can bound the Euclidean distance:

∥s̃ − s∥2 = ∥(ATA)−1ATe∥2

≤ ∥(ATA)−1/2∥2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
operator norm

⋅∥(ATA)−1/2ATe∥2

= λ−1min ⋅ eTA(ATA)−1ATe = λ−1min ⋅ eTMe

where λmin ≈ mσ2a smallest eigenvalue of ATA and
M = A(ATA)−1AT

19/21 ©2017 NTT Secure Platform Laboratories

The least squares approach (II)

▸ Claim: s̃ is an approximation of s

▸ The difference is a function of A and e:

s̃ − s = (ATA)−1ATb − s

= (ATA)−1AT(As + e) − s = (ATA)−1ATe

▸ Thus, we can bound the Euclidean distance:

∥s̃ − s∥2 = ∥(ATA)−1ATe∥2

≤ ∥(ATA)−1/2∥2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
operator norm

⋅∥(ATA)−1/2ATe∥2

= λ−1min ⋅ eTA(ATA)−1ATe = λ−1min ⋅ eTMe

where λmin ≈ mσ2a smallest eigenvalue of ATA and
M = A(ATA)−1AT

19/21 ©2017 NTT Secure Platform Laboratories

The least squares approach (II)

▸ Claim: s̃ is an approximation of s

▸ The difference is a function of A and e:

s̃ − s = (ATA)−1ATb − s

= (ATA)−1AT(As + e) − s = (ATA)−1ATe

▸ Thus, we can bound the Euclidean distance:

∥s̃ − s∥2 = ∥(ATA)−1ATe∥2

≤ ∥(ATA)−1/2∥2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
operator norm

⋅∥(ATA)−1/2ATe∥2

= λ−1min ⋅ eTA(ATA)−1ATe = λ−1min ⋅ eTMe

where λmin ≈ mσ2a smallest eigenvalue of ATA and
M = A(ATA)−1AT

19/21 ©2017 NTT Secure Platform Laboratories

The least squares approach (III)

▸ Usually, the least square method approximates ∥s̃ − s∥22, but we
need ∥s̃ − s∥2

∞
to round each coefficient

▸ If χe is τe-subgaussian, s̃ − s is τe/
√
λmin(ATA)-subgaussian

▸ if v ∈ Rn is τ -subgaussian, Pr[∥v∥∞ > t] ≤ 2n ⋅ exp(−t2/2τ2)
▸ Then, Pr[∥s̃ − s∥∞ > 1/2] ≤ 2n ⋅ exp(−λmin(A

TA)
8τ2e

), where

λmin(ATA) < mσ2
a

2 whp

▸ If m ≥ 32
τ2e
σ2
a

log(2n), Pr[∥s̃ − s∥∞ > 1/2] = 1/2n

20/21 ©2017 NTT Secure Platform Laboratories

The least squares approach (III)

▸ Usually, the least square method approximates ∥s̃ − s∥22, but we
need ∥s̃ − s∥2

∞
to round each coefficient

▸ If χe is τe-subgaussian, s̃ − s is τe/
√
λmin(ATA)-subgaussian

▸ if v ∈ Rn is τ -subgaussian, Pr[∥v∥∞ > t] ≤ 2n ⋅ exp(−t2/2τ2)
▸ Then, Pr[∥s̃ − s∥∞ > 1/2] ≤ 2n ⋅ exp(−λmin(A

TA)
8τ2e

), where

λmin(ATA) < mσ2
a

2 whp

▸ If m ≥ 32
τ2e
σ2
a

log(2n), Pr[∥s̃ − s∥∞ > 1/2] = 1/2n

20/21 ©2017 NTT Secure Platform Laboratories

The least squares approach (III)

▸ Usually, the least square method approximates ∥s̃ − s∥22, but we
need ∥s̃ − s∥2

∞
to round each coefficient

▸ If χe is τe-subgaussian, s̃ − s is τe/
√
λmin(ATA)-subgaussian

▸ if v ∈ Rn is τ -subgaussian, Pr[∥v∥∞ > t] ≤ 2n ⋅ exp(−t2/2τ2)
▸ Then, Pr[∥s̃ − s∥∞ > 1/2] ≤ 2n ⋅ exp(−λmin(A

TA)
8τ2e

), where

λmin(ATA) < mσ2
a

2 whp

▸ If m ≥ 32
τ2e
σ2
a

log(2n), Pr[∥s̃ − s∥∞ > 1/2] = 1/2n

20/21 ©2017 NTT Secure Platform Laboratories

The least squares approach (III)

▸ Usually, the least square method approximates ∥s̃ − s∥22, but we
need ∥s̃ − s∥2

∞
to round each coefficient

▸ If χe is τe-subgaussian, s̃ − s is τe/
√
λmin(ATA)-subgaussian

▸ if v ∈ Rn is τ -subgaussian, Pr[∥v∥∞ > t] ≤ 2n ⋅ exp(−t2/2τ2)
▸ Then, Pr[∥s̃ − s∥∞ > 1/2] ≤ 2n ⋅ exp(−λmin(A

TA)
8τ2e

), where

λmin(ATA) < mσ2
a

2 whp

▸ If m ≥ 32
τ2e
σ2
a

log(2n), Pr[∥s̃ − s∥∞ > 1/2] = 1/2n

20/21 ©2017 NTT Secure Platform Laboratories

The least squares approach (III)

▸ Usually, the least square method approximates ∥s̃ − s∥22, but we
need ∥s̃ − s∥2

∞
to round each coefficient

▸ If χe is τe-subgaussian, s̃ − s is τe/
√
λmin(ATA)-subgaussian

▸ if v ∈ Rn is τ -subgaussian, Pr[∥v∥∞ > t] ≤ 2n ⋅ exp(−t2/2τ2)
▸ Then, Pr[∥s̃ − s∥∞ > 1/2] ≤ 2n ⋅ exp(−λmin(A

TA)
8τ2e

), where

λmin(ATA) < mσ2
a

2 whp

▸ If m ≥ 32
τ2e
σ2
a

log(2n), Pr[∥s̃ − s∥∞ > 1/2] = 1/2n

20/21 ©2017 NTT Secure Platform Laboratories

Conclusion

▸ Linear Regression + Rounding can be seen as equivalent to
Babai algorithm

▸ Nearest Plane Algorithm is not always better in practice when
the lattice is nearly orthogonal

▸ Taking into account sparsity of the BLISS secret key is not
easy even with linear programming in practice (similar to
compressed sensing)

21/21 ©2017 NTT Secure Platform Laboratories

Conclusion

▸ Linear Regression + Rounding can be seen as equivalent to
Babai algorithm

▸ Nearest Plane Algorithm is not always better in practice when
the lattice is nearly orthogonal

▸ Taking into account sparsity of the BLISS secret key is not
easy even with linear programming in practice (similar to
compressed sensing)

21/21 ©2017 NTT Secure Platform Laboratories

Conclusion

▸ Linear Regression + Rounding can be seen as equivalent to
Babai algorithm

▸ Nearest Plane Algorithm is not always better in practice when
the lattice is nearly orthogonal

▸ Taking into account sparsity of the BLISS secret key is not
easy even with linear programming in practice (similar to
compressed sensing)

21/21 ©2017 NTT Secure Platform Laboratories

	The side-channel leakage of BLISS rejection sampling
	LWE over the integers

