

LWE without Modular Reduction and Application

Pierre-Alain Fouque

Rennes Univ

IRISA, 2018-5-25

joint work with C. Delaplace, T. Espitau, J. Bootle, M. Tibouchi

Outline

The side-channel leakage of BLISS rejection sampling

LWE over the integers

Outline

The side-channel leakage of BLISS rejection sampling

LWE over the integers

- The rejection sampling step leaks secret key info through timing side-channels
- More precisely, leakage of two functions of the secret key
 - exact leakage of a quadratic function of the key
 - noisy leakage of a linear function of the key
- In the CCS paper: exploit the quadratic leakage
 - requires relatively few side-channel traces
 - heavy-weight, expensive algebraic number theory
 - ▶ can only attack weak keys (≈ 7%)
- Claim: the linear leakage is not useful
 - ▶ noisy linear system of dimension ≥ original lattice problem
 - so this should not help
- This talk: actually, it is useful!
 - much faster attack than CCS
 - works against all keys
 - drawback: requires more traces

- The rejection sampling step leaks secret key info through timing side-channels
- More precisely, leakage of two functions of the secret key
 - exact leakage of a quadratic function of the key
 - noisy leakage of a linear function of the key
- In the CCS paper: exploit the quadratic leakage
 - requires relatively few side-channel traces
 - heavy-weight, expensive algebraic number theory
 - can only attack weak keys ($\approx 7\%$)
- Claim: the linear leakage is not useful
 - ▶ noisy linear system of dimension ≥ original lattice problem
 - so this should not help
- This talk: actually, it is useful!
 - much faster attack than CCS
 - works against all keys
 - drawback: requires more traces

- The rejection sampling step leaks secret key info through timing side-channels
- More precisely, leakage of two functions of the secret key
 - exact leakage of a quadratic function of the key
 - noisy leakage of a linear function of the key
- In the CCS paper: exploit the quadratic leakage
 - requires relatively few side-channel traces
 - heavy-weight, expensive algebraic number theory
 - ► can only attack weak keys (≈ 7%)
- Claim: the linear leakage is not useful
 - ▶ noisy linear system of dimension ≥ original lattice problem
 - so this should not help
- This talk: actually, it is useful!
 - much faster attack than CCS
 - works against all keys
 - drawback: requires more traces

- The rejection sampling step leaks secret key info through timing side-channels
- More precisely, leakage of two functions of the secret key
 - exact leakage of a quadratic function of the key
 - noisy leakage of a linear function of the key
- In the CCS paper: exploit the quadratic leakage
 - requires relatively few side-channel traces
 - heavy-weight, expensive algebraic number theory
 - can only attack weak keys ($\approx 7\%$)
- Claim: the linear leakage is not useful
 - ▶ noisy linear system of dimension \geq original lattice problem
 - so this should not help
- This talk: actually, it is useful!
 - much faster attack than CCS
 - works against all keys
 - drawback: requires more traces

- The rejection sampling step leaks secret key info through timing side-channels
- More precisely, leakage of two functions of the secret key
 - exact leakage of a quadratic function of the key
 - noisy leakage of a linear function of the key
- In the CCS paper: exploit the quadratic leakage
 - requires relatively few side-channel traces
 - heavy-weight, expensive algebraic number theory
 - can only attack weak keys ($\approx 7\%$)
- Claim: the linear leakage is not useful
 - ▶ noisy linear system of dimension \geq original lattice problem
 - so this should not help
- This talk: actually, it is useful!
 - much faster attack than CCS
 - works against all keys
 - drawback: requires more traces

- One of the top contenders for postquantum signatures
- Introduced by Ducas, Durmus, Lepoint and Lyubashevsky at CRYPTO'13
- Implementations on various platforms: desktop computers, microcontrollers/smartcards, FPGAs
- Deployed in the VPN library strongSwan

- Works in the cyclotomic ring $R = \mathbb{Z}[\mathbf{x}]/(x^n + 1)$, n = 512
- Computations modulo the prime q = 12289
- Secret key: random sparse $\mathbf{s}_1,\mathbf{s}_2\in R$ with coefficients in $\{-1,0,1\}$
- Verification key: $\mathbf{a} = -\mathbf{s}_2/\mathbf{s}_1 \mod q$
 - restart if s₁ not invertible

1: function
$$\operatorname{SIGN}(\mu, pk = \mathbf{a}, sk = \mathbf{S} = (\mathbf{s}_1, \mathbf{s}_2))$$

2: $\mathbf{y}_1, \mathbf{y}_2 \leftarrow D^n_{\mathbb{Z},\sigma}$ \triangleright Gaussian sampling
3: $\mathbf{c} \leftarrow H(\mathbf{a} \cdot \mathbf{y}_1 + \mathbf{y}_2, \mu)$ \triangleright special hashing
4: choose a random bit b
5: $\mathbf{z}_1 \leftarrow \mathbf{y}_1 + (-1)^b \mathbf{s}_1 \mathbf{c}$
6: $\mathbf{z}_2 \leftarrow \mathbf{y}_2 + (-1)^b \mathbf{s}_2 \mathbf{c}$
7: continue with probability
 $1/(M \exp(-\|\mathbf{Sc}\|^2/(2\sigma^2)) \cosh(\langle \mathbf{z}, \mathbf{Sc} \rangle/\sigma^2)$ otherwise restart
8: $\mathbf{z}_2^{\dagger} \leftarrow \operatorname{COMPRESS}(\mathbf{z}_2)$
9: return $(\mathbf{z}_1, \mathbf{z}_2^{\dagger}, \mathbf{c})$
10: end function

1: function SIGN(
$$\mu$$
, $pk = a$, $sk = S = (s_1, s_2)$)
2: $y_1, y_2 \leftarrow D^n_{\mathbb{Z},\sigma}$ \triangleright Gaussian sampling
3: $\mathbf{c} \leftarrow H(\mathbf{a} \cdot \mathbf{y}_1 + \mathbf{y}_2, \mu)$ \triangleright special hashing
4: choose a random bit b
5: $\mathbf{z}_1 \leftarrow \mathbf{y}_1 + (-1)^b \mathbf{s}_1 \mathbf{c}$
6: $\mathbf{z}_2 \leftarrow \mathbf{y}_2 + (-1)^b \mathbf{s}_2 \mathbf{c}$
7: continue with probability
 $1/(M \exp(-\|\mathbf{Sc}\|^2/(2\sigma^2)) \cosh(\langle \mathbf{z}, \mathbf{Sc} \rangle/\sigma^2)$ otherwise restart
8: $\mathbf{z}_2^{\dagger} \leftarrow \text{COMPRESS}(\mathbf{z}_2)$
9: return $(\mathbf{z}_1, \mathbf{z}_2^{\dagger}, \mathbf{c})$
10: end function

1: function SIGN(
$$\mu$$
, $pk = a$, $sk = S = (s_1, s_2)$)
2: $y_1, y_2 \leftarrow D^n_{\mathbb{Z},\sigma}$ \triangleright Gaussian sampling
3: $c \leftarrow H(a \cdot y_1 + y_2, \mu)$ \triangleright special hashing
4: choose a random bit b
5: $z_1 \leftarrow y_1 + (-1)^b s_1 c$
6: $z_2 \leftarrow y_2 + (-1)^b s_2 c$
7: continue with probability
 $1/(M \exp(-\|Sc\|^2/(2\sigma^2)) \cosh(\langle z, Sc \rangle/\sigma^2))$ otherwise restart
8: $z_2^{\dagger} \leftarrow \text{COMPRESS}(z_2)$
9: return (z_1, z_2^{\dagger}, c)
10: end function

1: function
$$\operatorname{SIGN}(\mu, pk = \mathbf{a}, sk = \mathbf{S} = (\mathbf{s}_1, \mathbf{s}_2))$$

2: $\mathbf{y}_1, \mathbf{y}_2 \leftarrow D_{\mathbb{Z},\sigma}^n$ \triangleright Gaussian sampling
3: $\mathbf{c} \leftarrow H(\mathbf{a} \cdot \mathbf{y}_1 + \mathbf{y}_2, \mu)$ \triangleright special hashing
4: choose a random bit b
5: $\mathbf{z}_1 \leftarrow \mathbf{y}_1 + (-1)^b \mathbf{s}_1 \mathbf{c}$
6: $\mathbf{z}_2 \leftarrow \mathbf{y}_2 + (-1)^b \mathbf{s}_2 \mathbf{c}$
7: continue with probability
 $1/(M \exp(-\|\mathbf{Sc}\|^2/(2\sigma^2)) \cosh(\langle \mathbf{z}, \mathbf{Sc} \rangle / \sigma^2))$ otherwise restart
8: $\mathbf{z}_2^{\dagger} \leftarrow \operatorname{COMPRESS}(\mathbf{z}_2)$
9: return $(\mathbf{z}_1, \mathbf{z}_2^{\dagger}, \mathbf{c})$
10: end function

1: function
$$\operatorname{SIGN}(\mu, pk = \mathbf{a}, sk = \mathbf{S} = (\mathbf{s}_1, \mathbf{s}_2))$$

2: $\mathbf{y}_1, \mathbf{y}_2 \leftarrow D_{\mathbb{Z},\sigma}^n$ \triangleright Gaussian sampling
3: $\mathbf{c} \leftarrow H(\mathbf{a} \cdot \mathbf{y}_1 + \mathbf{y}_2, \mu)$ \triangleright special hashing
4: choose a random bit b
5: $\mathbf{z}_1 \leftarrow \mathbf{y}_1 + (-1)^b \mathbf{s}_1 \mathbf{c}$
6: $\mathbf{z}_2 \leftarrow \mathbf{y}_2 + (-1)^b \mathbf{s}_2 \mathbf{c}$
7: continue with probability
 $1/(M \exp(-\|\mathbf{Sc}\|^2/(2\sigma^2)) \cosh(\langle \mathbf{z}, \mathbf{Sc} \rangle/\sigma^2)$ otherwise restart
8: $\mathbf{z}_2^{\dagger} \leftarrow \operatorname{COMPRESS}(\mathbf{z}_2)$
9: return $(\mathbf{z}_1, \mathbf{z}_2^{\dagger}, \mathbf{c})$
10: end function

- Attack on the rejection sampling
 - cornerstone of BLISS security/efficiency
- Straightforward implementation of rejection sampling would be inefficient for constrained devices: use optimized rejection algorithm
- ▶ Side-channel leakage: can read off $\|\mathbf{Sc}\|^2$ on SPA/SEMA trace!
- \blacktriangleright From a few of these: recover $s_1\cdot \bar{s_1}$ ("relative norm" of the secret key)
- Then, algebraic number theory to retrieve s_1

- Attack on the rejection sampling
 - cornerstone of BLISS security/efficiency
- Straightforward implementation of rejection sampling would be inefficient for constrained devices: use optimized rejection algorithm
- ▶ Side-channel leakage: can read off $\|Sc\|^2$ on SPA/SEMA trace!
- \blacktriangleright From a few of these: recover $s_1\cdot \bar{s_1}$ ("relative norm" of the secret key)
- ▶ Then, algebraic number theory to retrieve s₁

- Attack on the rejection sampling
 - cornerstone of BLISS security/efficiency
- Straightforward implementation of rejection sampling would be inefficient for constrained devices: use optimized rejection algorithm
- Idea of the optimization: iterated Bernoulli trials on the bits of $\| \textbf{Sc} \|^2$
- ▶ Side-channel leakage: can read off $\|\mathbf{Sc}\|^2$ on SPA/SEMA trace!
- \blacktriangleright From a few of these: recover $s_1\cdot \bar{s_1}$ ("relative norm" of the secret key)
- ▶ Then, algebraic number theory to retrieve s₁

- Attack on the rejection sampling
 - cornerstone of BLISS security/efficiency
- Straightforward implementation of rejection sampling would be inefficient for constrained devices: use optimized rejection algorithm
- Idea of the optimization: iterated Bernoulli trials on the bits of $\|\boldsymbol{Sc}\|^2$
- Side-channel leakage: can read off $\|\mathbf{Sc}\|^2$ on SPA/SEMA trace!
- \blacktriangleright From a few of these: recover $s_1\cdot \bar{s_1}$ ("relative norm" of the secret key)
- ▶ Then, algebraic number theory to retrieve s₁

- Attack on the rejection sampling
 - cornerstone of BLISS security/efficiency
- Straightforward implementation of rejection sampling would be inefficient for constrained devices: use optimized rejection algorithm
- Idea of the optimization: iterated Bernoulli trials on the bits of $\| \textbf{Sc} \|^2$
- Side-channel leakage: can read off $\|\mathbf{Sc}\|^2$ on SPA/SEMA trace!
- \blacktriangleright From a few of these: recover $s_1 \cdot \bar{s_1}$ ("relative norm" of the secret key)
- ▶ Then, algebraic number theory to retrieve s₁

- Attack on the rejection sampling
 - cornerstone of BLISS security/efficiency
- Straightforward implementation of rejection sampling would be inefficient for constrained devices: use optimized rejection algorithm
- Idea of the optimization: iterated Bernoulli trials on the bits of $\| \textbf{Sc} \|^2$
- Side-channel leakage: can read off $\|\mathbf{Sc}\|^2$ on SPA/SEMA trace!
- \blacktriangleright From a few of these: recover $s_1 \cdot \bar{s_1}$ ("relative norm" of the secret key)
- Then, algebraic number theory to retrieve s_1

1: function SAMPLEBERNEXP(x) 2: for $i = 0$ to $\ell - 1$ do 3: if $x_i = 1$ then 4: Sample $a \leftarrow \mathscr{B}_{c_i}$ 5: if $a = 0$ then return 0 6: end if 7: end for 8: roturn 1	1: function SAMPLEBERN- COSH(x) 2: Sample $a \leftarrow \mathscr{B}_{\exp(-x/f)}$ 3: if $a = 1$ then return 1 4: Sample $b \leftarrow \mathscr{B}_{1/2}$ 5: if $b = 1$ then restart 6: Sample $c \leftarrow \mathscr{B}_{\exp(-x/f)}$ 7: if $c = 1$ then restart
7: end for 8: return 1 9: end function $\triangleright x = K - \ \mathbf{Sc}\ ^2$	6: Sample $c \leftarrow \mathscr{B}_{\exp(-x/f)}$ 7: if $c = 1$ then restart 8: return 0 0: and function $rac{1}{2} x = 2 / 7$ Sc)
	9: end function $\Rightarrow x = 2 \cdot \langle z, Sc \rangle$

Sampling algorithms for the distributions $\mathscr{B}_{\exp(-x/f)}$ and $\mathscr{B}_{1/\cosh(x/f)}$ ($c_i = 2^i/f$ precomputed)

1: function SAMPLEBERNEXP(x) 2: for $i = 0$ to $\ell - 1$ do	1: function SAMPLEBERN- COSH(x)
3: if $x_i = 1$ then	2: Sample $a \leftarrow \mathscr{B}_{\exp(-x/f)}$
4: Sample $a \leftarrow \mathscr{B}_{c_i}$	3: if $a = 1$ then return 1
5: if <i>a</i> = 0 then return 0	4: Sample $b \leftarrow \mathscr{B}_{1/2}$
6: end if	5: if $b = 1$ then restart
7: end for	6: Sample $c \leftarrow \mathscr{B}_{\exp(-x/f)}$
8: return 1	7: if $c = 1$ then restart
9: end function $\triangleright x = K - \ \mathbf{Sc}\ ^2$	8: return 0
	9: end function $\triangleright x = 2 \cdot \langle z, Sc \rangle$

Sampling algorithms for the distributions $\mathscr{B}_{\exp(-x/f)}$ and $\mathscr{B}_{1/\cosh(x/f)}$ ($c_i = 2^i/f$ precomputed)

EMA trace of BLISS rejection sampling on 8-bit AVR for norm $\|\mathbf{Sc}\|^2 = 14404$. One reads the value: $K - \|\mathbf{Sc}\|^2 = 46539 - 14404 = 32135 = \overline{11110110000111}_2$

Recall the rejection sampling probability of BLISS signing:

$$1 / \left(M \exp\left(-\frac{\|\mathbf{Sc}\|^2}{2\sigma^2}\right) \cosh\left(\frac{\langle \mathbf{z}, \mathbf{Sc} \rangle}{\sigma^2}\right) \right),$$

- The exp part of the rejection sampling leaks ||Sc||² and ultimately the relative norm of s₁ and s₂: used in CCS17
- Can't we use the cosh part instead? It directly leaks:

$$\langle \mathbf{z}_1, \mathbf{s}_1 \mathbf{c} \rangle + \langle \mathbf{z}_2, \mathbf{s}_2 \mathbf{c} \rangle$$

Recall the rejection sampling probability of BLISS signing:

$$1 / \left(M \exp\left(-\frac{\|\mathbf{Sc}\|^2}{2\sigma^2}\right) \cosh\left(\frac{\langle \mathbf{z}, \mathbf{Sc} \rangle}{\sigma^2}\right) \right),$$

- ► The exp part of the rejection sampling leaks ||Sc||² and ultimately the relative norm of s₁ and s₂: used in CCS17
- Can't we use the cosh part instead? It directly leaks:

$$\langle \mathbf{z}_1, \mathbf{s}_1 \mathbf{c} \rangle + \langle \mathbf{z}_2, \mathbf{s}_2 \mathbf{c} \rangle$$

Recall the rejection sampling probability of BLISS signing:

$$1 / \left(M \exp\left(-\frac{\|\mathbf{Sc}\|^2}{2\sigma^2}\right) \cosh\left(\frac{\langle \mathbf{z}, \mathbf{Sc} \rangle}{\sigma^2}\right) \right),$$

- The exp part of the rejection sampling leaks ||Sc||² and ultimately the relative norm of s₁ and s₂: used in CCS17
- Can't we use the cosh part instead? It directly leaks:

$$\langle \textbf{z}_1, \textbf{s}_1 \textbf{c} \rangle + \langle \textbf{z}_2, \textbf{s}_2 \textbf{c} \rangle$$

Recall the rejection sampling probability of BLISS signing:

$$1 / \left(M \exp\left(-\frac{\|\mathbf{Sc}\|^2}{2\sigma^2}\right) \cosh\left(\frac{\langle \mathbf{z}, \mathbf{Sc} \rangle}{\sigma^2}\right) \right),$$

- The exp part of the rejection sampling leaks ||Sc||² and ultimately the relative norm of s₁ and s₂: used in CCS17
- Can't we use the cosh part instead? It directly leaks:

$$\langle \mathbf{z}_1, \mathbf{s}_1 \mathbf{c} \rangle + \langle \mathbf{z}_2, \mathbf{s}_2 \mathbf{c} \rangle$$

- Problem: signatures do not contain z₂, but only a compressed variant z[†]₂, and compression is lossy
 - only obtain noisy linear system in the secret key
- First reaction: like LWE in twice the original dimension, so probably hopeless
- Second opinion: not hopeless at all, because there is no modular reduction

- Problem: signatures do not contain z₂, but only a compressed variant z[†]₂, and compression is lossy
 - only obtain noisy linear system in the secret key
- First reaction: like LWE in twice the original dimension, so probably hopeless
- Second opinion: not hopeless at all, because there is no modular reduction

- Problem: signatures do not contain z₂, but only a compressed variant z[†]₂, and compression is lossy
 - only obtain noisy linear system in the secret key
- First reaction: like LWE in twice the original dimension, so probably hopeless
- Second opinion: not hopeless at all, because there is no modular reduction

More precise description of the leakage

$$\langle \mathbf{z}_1, \mathbf{s}_1 \mathbf{c} \rangle + \langle \mathbf{z}_2, \mathbf{s}_2 \mathbf{c} \rangle = \langle \mathbf{z}_1, \mathbf{s}_1 \mathbf{c} \rangle + \langle 2^d \mathbf{z}_2^\dagger + (\mathbf{z}_2 - 2^d \mathbf{z}_2^\dagger), \mathbf{s}_2 \mathbf{c} \rangle$$

= $\langle \mathbf{z}_1 \mathbf{c}^*, \mathbf{s}_1 \rangle + \langle 2^d \mathbf{z}_2^\dagger \mathbf{c}^*, \mathbf{s}_2 \rangle + \langle \mathbf{z}_2 - 2^d \mathbf{z}_2^\dagger, \mathbf{s}_2 \mathbf{c} \rangle$
 $b = \langle \mathbf{a}, \mathbf{s} \rangle + e$

where

$$\mathbf{s} = (\mathbf{s}_1, \mathbf{s}_2)$$
$$\mathbf{a} = (\mathbf{z}_1 \mathbf{c}^*, 2^d \mathbf{z}_2^\dagger \mathbf{c}^*)$$
$$\mathbf{b} = \langle \mathbf{z}_1, \mathbf{s}_1 \mathbf{c} \rangle + \langle \mathbf{z}_2, \mathbf{s}_2 \mathbf{c} \rangle$$
$$\mathbf{e} = \langle \mathbf{z}_2 - 2^d \mathbf{z}_2^\dagger, \mathbf{s}_2 \mathbf{c} \rangle$$

(secret key) (known from sig.) (leakage) small unknown value)

More precise description of the leakage

$$\langle \mathbf{z}_1, \mathbf{s}_1 \mathbf{c} \rangle + \langle \mathbf{z}_2, \mathbf{s}_2 \mathbf{c} \rangle = \langle \mathbf{z}_1, \mathbf{s}_1 \mathbf{c} \rangle + \langle 2^d \mathbf{z}_2^{\dagger} + (\mathbf{z}_2 - 2^d \mathbf{z}_2^{\dagger}), \mathbf{s}_2 \mathbf{c} \rangle$$

= $\langle \mathbf{z}_1 \mathbf{c}^*, \mathbf{s}_1 \rangle + \langle 2^d \mathbf{z}_2^{\dagger} \mathbf{c}^*, \mathbf{s}_2 \rangle + \langle \mathbf{z}_2 - 2^d \mathbf{z}_2^{\dagger}, \mathbf{s}_2 \mathbf{c} \rangle$
 $b = \langle \mathbf{a}, \mathbf{s} \rangle + e$

where

$$\mathbf{s} = (\mathbf{s}_1, \mathbf{s}_2)$$

$$\mathbf{a} = (\mathbf{z}_1 \mathbf{c}^*, 2^d \mathbf{z}_2^{\dagger} \mathbf{c}^*)$$

$$\mathbf{b} = \langle \mathbf{z}_1, \mathbf{s}_1 \mathbf{c} \rangle + \langle \mathbf{z}_2, \mathbf{s}_2 \mathbf{c} \rangle$$

$$\mathbf{e} = \langle \mathbf{z}_2 - 2^d z_2^{\dagger}, \mathbf{s}_2 \mathbf{c} \rangle$$

(secret key) (known from sig.) (leakage) (small unknown value)

Outline

The side-channel leakage of BLISS rejection sampling

LWE over the integers

The Integer LWE problem

- **s** secret vector in \mathbb{Z}^n
- χ_{a} , χ_{e} probability distributions over $\mathbb Z$

Integer-LWE Problem

Given *m* samples (\mathbf{a}_i, b_i) of the form:

$$\mathbf{a}_i \leftarrow \chi_a^n \qquad b_i = \langle \mathbf{a}, \mathbf{s} \rangle + e \quad (e \leftarrow \chi_e)$$

find s.

Like LWE, without the modular reduction but $Var[\chi_e]/Var[\chi_a]$ polynomial in *n*. Can we solve this efficiently?

Our main result

Integer-LWE is easy

Suppose χ_a, χ_e are centered distributions of std. dev. σ_a, σ_e . We show that we can recover **s** with *m* samples for

$$m = O\left(\log n \cdot \left(\frac{\sigma_e}{\sigma_a}\right)^2\right).$$

- In particular, unless σ_e is exponentially larger than σ_a , we can always recover **s** with poly-many samples
- Rigorous results for χ_a, χ_e subgaussian distributions

• Lower bound:
$$m = \Omega\left(\left(\frac{\sigma_e}{\sigma_a}\right)^2\right)$$

Let $\mathscr{D}_{\mathbf{s},\chi_a,\chi_e} = \{(\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + e) : \mathbf{a} \leftarrow \chi_a^n, e \leftarrow \chi_e\}$. Given $\mathbf{s} \neq \mathbf{s}' \in \mathbb{Z}^n$, how close are the distributions $\mathscr{D}_{\mathbf{s},\chi_a,\chi_e}$ and $\mathscr{D}_{\mathbf{s}',\chi_a,\chi_e}$?

- We show that when χ_e is either uniform or Gaussian, the statistical distance is bounded by O(^{σ_a}/_{σ_e} ||s − s'||)
- Consequently, we need $\Omega(\frac{1}{\|\mathbf{s}-\mathbf{s}'\|^2}(\frac{\sigma_e}{\sigma_a})^2)$ samples to distinguish those distributions with constant success probability

Given m > n integer-LWE samples, we can put them in matrix form:

$$A \in \mathbb{Z}^{m \times n}$$
 b = A **s** + **e** (**b**, **e** $\in \mathbb{Z}^m$)

- Overdetermined linear system with errors. Least squares: find $\tilde{\mathbf{s}} \in \mathbb{R}^n$ minimizing $||A\tilde{\mathbf{s}} \mathbf{b}||_2^2$
- Solution:

$$\tilde{\mathbf{s}} = (A^T A)^{-1} A^T \mathbf{b}$$

- Only makes sense if $A^T A$ invertible, but this should be the case for large *m*. Indeed: $A^T A = (\langle \mathbf{a}_i, \mathbf{a}_j \rangle)_{1 \le i \le n} \in \mathbb{Z}^{n \times n}$
- Law of large numbers: $A^T A \approx E[A^T A]$. Now:

$$E[\langle \mathbf{a}_i, \mathbf{a}_j \rangle] = \sum_{k=1}^m E[a_{ik}a_{jk}] = \begin{cases} m \cdot E[\chi_a]^2 = 0 & i \neq j \\ m \cdot E[\chi_a^2] = m\sigma_a^2 & i = j \end{cases}$$

Given m > n integer-LWE samples, we can put them in matrix form:

$$A \in \mathbb{Z}^{m \times n}$$
 $\mathbf{b} = A\mathbf{s} + \mathbf{e}$ $(\mathbf{b}, \mathbf{e} \in \mathbb{Z}^m)$

• Overdetermined linear system with errors. Least squares: find $\tilde{\mathbf{s}} \in \mathbb{R}^n$ minimizing $||A\tilde{\mathbf{s}} - \mathbf{b}||_2^2$

Solution:

 $\tilde{\mathbf{s}} = (A^T A)^{-1} A^T \mathbf{b}$

- Only makes sense if $A^T A$ invertible, but this should be the case for large *m*. Indeed: $A^T A = (\langle \mathbf{a}_i, \mathbf{a}_j \rangle)_{1 \le i \le n} \in \mathbb{Z}^{n \times n}$
- Law of large numbers: $A^T A \approx E[A^T A]$. Now:

$$E[\langle \mathbf{a}_i, \mathbf{a}_j \rangle] = \sum_{k=1}^m E[a_{ik}a_{jk}] = \begin{cases} m \cdot E[\chi_a]^2 = 0 & i \neq j \\ m \cdot E[\chi_a^2] = m\sigma_a^2 & i = j \end{cases}$$

Given m > n integer-LWE samples, we can put them in matrix form:

$$A \in \mathbb{Z}^{m \times n}$$
 b = A **s** + **e** (**b**, **e** $\in \mathbb{Z}^m$)

- Overdetermined linear system with errors. Least squares: find $\tilde{\mathbf{s}} \in \mathbb{R}^n$ minimizing $||A\tilde{\mathbf{s}} \mathbf{b}||_2^2$
- Solution:

$$\tilde{\mathbf{s}} = (A^T A)^{-1} A^T \mathbf{b}$$

- Only makes sense if $A^T A$ invertible, but this should be the case for large *m*. Indeed: $A^T A = (\langle \mathbf{a}_i, \mathbf{a}_j \rangle)_{1 \le i \le n} \in \mathbb{Z}^{n \times n}$
- Law of large numbers: $A^T A \approx E[A^T A]$. Now:

$$E[\langle \mathbf{a}_i, \mathbf{a}_j \rangle] = \sum_{k=1}^m E[a_{ik}a_{jk}] = \begin{cases} m \cdot E[\chi_a]^2 = 0 & i \neq j \\ m \cdot E[\chi_a^2] = m\sigma_a^2 & i = j \end{cases}$$

Given m > n integer-LWE samples, we can put them in matrix form:

$$A \in \mathbb{Z}^{m \times n}$$
 $\mathbf{b} = A\mathbf{s} + \mathbf{e} \quad (\mathbf{b}, \mathbf{e} \in \mathbb{Z}^m)$

- Overdetermined linear system with errors. Least squares: find $\tilde{\mathbf{s}} \in \mathbb{R}^n$ minimizing $||A\tilde{\mathbf{s}} \mathbf{b}||_2^2$
- Solution:

$$\tilde{\mathbf{s}} = (A^T A)^{-1} A^T \mathbf{b}$$

- Only makes sense if $A^T A$ invertible, but this should be the case for large *m*. Indeed: $A^T A = (\langle \mathbf{a}_i, \mathbf{a}_j \rangle)_{1 \le i, j \le n} \in \mathbb{Z}^{n \times n}$
- Law of large numbers: $A^T A \approx E[A^T A]$. Now:

$$E[\langle \mathbf{a}_i, \mathbf{a}_j \rangle] = \sum_{k=1}^m E[a_{ik}a_{jk}] = \begin{cases} m \cdot E[\chi_a]^2 = 0 & i \neq j \\ m \cdot E[\chi_a^2] = m\sigma_a^2 & i = j \end{cases}$$

Given m > n integer-LWE samples, we can put them in matrix form:

$$A \in \mathbb{Z}^{m \times n}$$
 $\mathbf{b} = A\mathbf{s} + \mathbf{e}$ $(\mathbf{b}, \mathbf{e} \in \mathbb{Z}^m)$

- Overdetermined linear system with errors. Least squares: find $\tilde{\mathbf{s}} \in \mathbb{R}^n$ minimizing $||A\tilde{\mathbf{s}} \mathbf{b}||_2^2$
- Solution:

$$\tilde{\mathbf{s}} = (A^T A)^{-1} A^T \mathbf{b}$$

- Only makes sense if $A^T A$ invertible, but this should be the case for large *m*. Indeed: $A^T A = (\langle \mathbf{a}_i, \mathbf{a}_j \rangle)_{1 \le i, j \le n} \in \mathbb{Z}^{n \times n}$
- Law of large numbers: $A^T A \approx E[A^T A]$. Now:

$$E[\langle \mathbf{a}_i, \mathbf{a}_j \rangle] = \sum_{k=1}^m E[a_{ik}a_{jk}] = \begin{cases} m \cdot E[\chi_a]^2 = 0 & i \neq j \\ m \cdot E[\chi_a^2] = m\sigma_a^2 & i = j \end{cases}$$

Given m > n integer-LWE samples, we can put them in matrix form:

$$A \in \mathbb{Z}^{m \times n}$$
 $\mathbf{b} = A\mathbf{s} + \mathbf{e}$ $(\mathbf{b}, \mathbf{e} \in \mathbb{Z}^m)$

- Overdetermined linear system with errors. Least squares: find $\tilde{\mathbf{s}} \in \mathbb{R}^n$ minimizing $||A\tilde{\mathbf{s}} \mathbf{b}||_2^2$
- Solution:

$$\tilde{\mathbf{s}} = (A^T A)^{-1} A^T \mathbf{b}$$

- Only makes sense if $A^T A$ invertible, but this should be the case for large *m*. Indeed: $A^T A = (\langle \mathbf{a}_i, \mathbf{a}_j \rangle)_{1 \le i, j \le n} \in \mathbb{Z}^{n \times n}$
- Law of large numbers: $A^T A \approx E[A^T A]$. Now:

$$E[\langle \mathbf{a}_i, \mathbf{a}_j \rangle] = \sum_{k=1}^m E[a_{ik}a_{jk}] = \begin{cases} m \cdot E[\chi_a]^2 = 0 & i \neq j \\ m \cdot E[\chi_a^2] = m\sigma_a^2 & i = j \end{cases}$$

- \blacktriangleright Claim: \tilde{s} is an approximation of s
- The difference is a function of A and **e**:

$$\tilde{\mathbf{s}} - \mathbf{s} = (A^T A)^{-1} A^T \mathbf{b} - \mathbf{s}$$
$$= (A^T A)^{-1} A^T (A\mathbf{s} + \mathbf{e}) - \mathbf{s} = (A^T A)^{-1} A^T \mathbf{e}$$

Thus, we can bound the Euclidean distance:

$$\|\mathbf{\tilde{s}} - \mathbf{s}\|^{2} = \|(A^{T}A)^{-1}A^{T}\mathbf{e}\|^{2}$$

$$\leq \underbrace{\|(A^{T}A)^{-1/2}\|^{2}}_{\text{operator norm}} \cdot \|(A^{T}A)^{-1/2}A^{T}\mathbf{e}\|^{2}$$

$$= \lambda_{\min}^{-1} \cdot \mathbf{e}^{T}A(A^{T}A)^{-1}A^{T}\mathbf{e} = \lambda_{\min}^{-1} \cdot \mathbf{e}^{T}M\mathbf{e}$$

where $\lambda_{\min} \approx m\sigma_a^2$ smallest eigenvalue of $A^T A$ and $M = A(A^T A)^{-1}A^T$

- Claim: \tilde{s} is an approximation of s
- The difference is a function of A and **e**:

$$\tilde{\mathbf{s}} - \mathbf{s} = (A^T A)^{-1} A^T \mathbf{b} - \mathbf{s}$$
$$= (A^T A)^{-1} A^T (A\mathbf{s} + \mathbf{e}) - \mathbf{s} = (A^T A)^{-1} A^T \mathbf{e}$$

Thus, we can bound the Euclidean distance:

$$\|\tilde{\mathbf{s}} - \mathbf{s}\|^{2} = \|(A^{T}A)^{-1}A^{T}\mathbf{e}\|^{2}$$

$$\leq \underbrace{\|(A^{T}A)^{-1/2}\|^{2}}_{\text{operator norm}} \cdot \|(A^{T}A)^{-1/2}A^{T}\mathbf{e}\|^{2}$$

$$= \lambda_{\min}^{-1} \cdot \mathbf{e}^{T}A(A^{T}A)^{-1}A^{T}\mathbf{e} = \lambda_{\min}^{-1} \cdot \mathbf{e}^{T}M\mathbf{e}$$

where $\lambda_{\min} \approx m\sigma_a^2$ smallest eigenvalue of $A^T A$ and $M = A(A^T A)^{-1}A^T$

- Claim: \tilde{s} is an approximation of s
- The difference is a function of A and **e**:

$$\tilde{\mathbf{s}} - \mathbf{s} = (A^T A)^{-1} A^T \mathbf{b} - \mathbf{s}$$
$$= (A^T A)^{-1} A^T (A\mathbf{s} + \mathbf{e}) - \mathbf{s} = (A^T A)^{-1} A^T \mathbf{e}$$

Thus, we can bound the Euclidean distance:

$$\|\mathbf{\tilde{s}} - \mathbf{s}\|^{2} = \|(A^{T}A)^{-1}A^{T}\mathbf{e}\|^{2}$$

$$\leq \underbrace{\|(A^{T}A)^{-1/2}\|^{2}}_{\text{operator norm}} \cdot \|(A^{T}A)^{-1/2}A^{T}\mathbf{e}\|^{2}$$

$$= \lambda_{\min}^{-1} \cdot \mathbf{e}^{T}A(A^{T}A)^{-1}A^{T}\mathbf{e} = \lambda_{\min}^{-1} \cdot \mathbf{e}^{T}M\mathbf{e}$$
where $\lambda_{\min} \approx m\sigma_{a}^{2}$ smallest eigenvalue of $A^{T}A$ and
$$M = A(A^{T}A)^{-1}A^{T}$$

- ► Usually, the least square method approximates ||š s||²₂, but we need ||š s||²_∞ to round each coefficient
- ▶ If χ_e is τ_e -subgaussian, $\tilde{\mathbf{s}} \mathbf{s}$ is $\tau_e / \sqrt{\lambda_{\min}(A^T A)}$ -subgaussian
- if $\mathbf{v} \in \mathbb{R}^n$ is τ -subgaussian, $\Pr[\|\mathbf{v}\|_{\infty} > t] \le 2n \cdot \exp(-t^2/2\tau^2)$
- ► Then, $\Pr[\|\mathbf{\tilde{s}} \mathbf{s}\|_{\infty} > 1/2] \le 2n \cdot \exp(-\frac{\lambda_{\min}(A^T A)}{8\tau_e^2})$, where $\lambda_{\min}(A^T A) < \frac{m\sigma_a^2}{2}$ whp
- If $m \ge 32 \frac{\tau_e^2}{\sigma_a^2} \log(2n)$, $\Pr[\|\mathbf{\tilde{s}} \mathbf{s}\|_{\infty} > 1/2] = 1/2n$

- ► Usually, the least square method approximates ||š s||²₂, but we need ||š s||²_∞ to round each coefficient
- If χ_e is τ_e -subgaussian, $\tilde{\mathbf{s}} \mathbf{s}$ is $\tau_e / \sqrt{\lambda_{\min}(A^T A)}$ -subgaussian
- if $\mathbf{v} \in \mathbb{R}^n$ is τ -subgaussian, $\Pr[\|\mathbf{v}\|_{\infty} > t] \le 2n \cdot \exp(-t^2/2\tau^2)$
- ► Then, $\Pr[\|\mathbf{\tilde{s}} \mathbf{s}\|_{\infty} > 1/2] \le 2n \cdot \exp(-\frac{\lambda_{\min}(A^T A)}{8\tau_e^2})$, where $\lambda_{\min}(A^T A) < \frac{m\sigma_a^2}{2}$ whp
- If $m \ge 32 \frac{\tau_e^2}{\sigma_a^2} \log(2n)$, $\Pr[\|\mathbf{\tilde{s}} \mathbf{s}\|_{\infty} > 1/2] = 1/2n$

- ► Usually, the least square method approximates ||š s||²₂, but we need ||š s||²_∞ to round each coefficient
- If χ_e is τ_e -subgaussian, $\tilde{\mathbf{s}} \mathbf{s}$ is $\tau_e / \sqrt{\lambda_{\min}(A^T A)}$ -subgaussian
- if $\mathbf{v} \in \mathbb{R}^n$ is τ -subgaussian, $\Pr[\|\mathbf{v}\|_{\infty} > t] \le 2n \cdot \exp(-t^2/2\tau^2)$
- ► Then, $\Pr[\|\tilde{\mathbf{s}} \mathbf{s}\|_{\infty} > 1/2] \le 2n \cdot \exp(-\frac{\lambda_{\min}(A^T A)}{8\tau_e^2})$, where $\lambda_{\min}(A^T A) < \frac{m\sigma_a^2}{2}$ whp
- If $m \ge 32 \frac{\tau_e^2}{\sigma_a^2} \log(2n)$, $\Pr[\|\mathbf{\tilde{s}} \mathbf{s}\|_{\infty} > 1/2] = 1/2n$

- ► Usually, the least square method approximates ||š s||²₂, but we need ||š s||²_∞ to round each coefficient
- If χ_e is τ_e -subgaussian, $\tilde{\mathbf{s}} \mathbf{s}$ is $\tau_e / \sqrt{\lambda_{\min}(A^T A)}$ -subgaussian
- if $\mathbf{v} \in \mathbb{R}^n$ is τ -subgaussian, $\Pr[\|\mathbf{v}\|_{\infty} > t] \le 2n \cdot \exp(-t^2/2\tau^2)$
- Then, $\Pr[\|\tilde{\mathbf{s}} \mathbf{s}\|_{\infty} > 1/2] \le 2n \cdot \exp(-\frac{\lambda_{\min}(A^T A)}{8\tau_e^2})$, where $\lambda_{\min}(A^T A) < \frac{m\sigma_a^2}{2}$ whp
- If $m \ge 32\frac{\tau_e^2}{\sigma_a^2}\log(2n)$, $\Pr[\|\mathbf{\tilde{s}} \mathbf{s}\|_{\infty} > 1/2] = 1/2n$

- ► Usually, the least square method approximates ||š s||²₂, but we need ||š s||²_∞ to round each coefficient
- If χ_e is τ_e -subgaussian, $\tilde{\mathbf{s}} \mathbf{s}$ is $\tau_e / \sqrt{\lambda_{\min}(A^T A)}$ -subgaussian
- if $\mathbf{v} \in \mathbb{R}^n$ is τ -subgaussian, $\Pr[\|\mathbf{v}\|_{\infty} > t] \le 2n \cdot \exp(-t^2/2\tau^2)$
- ► Then, $\Pr[\|\mathbf{\tilde{s}} \mathbf{s}\|_{\infty} > 1/2] \le 2n \cdot \exp(-\frac{\lambda_{\min}(A^T A)}{8\tau_e^2})$, where $\lambda_{\min}(A^T A) < \frac{m\sigma_a^2}{2}$ whp ► If $m \ge 32\frac{\tau_e^2}{\sigma_z^2} \log(2n)$, $\Pr[\|\mathbf{\tilde{s}} - \mathbf{s}\|_{\infty} > 1/2] = 1/2n$

Conclusion

- Linear Regression + Rounding can be seen as equivalent to Babai algorithm
- Nearest Plane Algorithm is not always better in practice when the lattice is nearly orthogonal
- Taking into account sparsity of the BLISS secret key is not easy even with linear programming in practice (similar to compressed sensing)

- Linear Regression + Rounding can be seen as equivalent to Babai algorithm
- Nearest Plane Algorithm is not always better in practice when the lattice is nearly orthogonal
- Taking into account sparsity of the BLISS secret key is not easy even with linear programming in practice (similar to compressed sensing)

- Linear Regression + Rounding can be seen as equivalent to Babai algorithm
- Nearest Plane Algorithm is not always better in practice when the lattice is nearly orthogonal
- Taking into account sparsity of the BLISS secret key is not easy even with linear programming in practice (similar to compressed sensing)