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BLISS Rejection Sampling
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timing side-channels
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BLISS Rejection Sampling

» The rejection sampling step leaks secret key info through
timing side-channels
» More precisely, leakage of two functions of the secret key
» exact leakage of a quadratic function of the key
» noisy leakage of a linear function of the key
In the CCS paper: exploit the quadratic leakage
» requires relatively few side-channel traces
» heavy-weight, expensive algebraic number theory
» can only attack weak keys (~ 7%)

v

v

Claim: the linear leakage is not useful
» noisy linear system of dimension > original lattice problem
» so this should not help
This talk: actually, it is useful!
» much faster attack than CCS
» works against all keys
» drawback: requires more traces

v
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BLISS: the basics

» One of the top contenders for postquantum signatures

v

Introduced by Ducas, Durmus, Lepoint and Lyubashevsky at
CRYPTO'13

» Implementations on various platforms: desktop computers,
microcontrollers/smartcards, FPGAs

» Deployed in the VPN library strongSwan
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BLISS: signing and verification keys

» Works in the cyclotomic ring R = Z[x]/(x" + 1), n=512
» Computations modulo the prime g = 12289

» Secret key: random sparse s1,sp € R with coefficients in
{-1,0,1}
» Verification key: a = —sy/s; mod ¢
» restart if s; not invertible
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BLISS: signature (simplified)

1: function SIGN(u, pk =a, sk =S = (s1,52))
2: y1,y2 < D7, > Gaussian sampling
3: c< H(a-y1+y2, 1) > special hashing
4: choose a random bit b
5 z; < y1 + (-1)bs;c
6 z; < yo + (-1)bsyc
7 continue with probability
1/(Mexp(-|Sc|?/(20°)) cosh((z, Sc)/o?) otherwise restart

8: zg <~ COMPRESS(22)
9: return (zl,zg,c)
10: end function
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Overview of the CCS 2017 attack

Attack on the rejection sampling
» cornerstone of BLISS security/efficiency

Straightforward implementation of rejection sampling would be
inefficient for constrained devices: use optimized rejection
algorithm

Idea of the optimization: iterated Bernoulli trials on the bits of
|Sc|?

Side-channel leakage: can read off |Sc|? on SPA/SEMA trace!

From a few of these: recover s -$7 (“relative norm” of the
secret key)

Then, algebraic number theory to retrieve s;
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BLISS rejection sampling

1: function SAMPLEBERNEXP(x) 1: function SAMPLEBERN-
2 for i=0to/-1do CosH(x)
3 if x; =1 then 2: Sample a < PBeyp(—x/f)
4: Sample a « %, 3 if a=1 then return 1
5: if a=0thenreturn0 | 4 Sample b < %,
6 end if 5: if b =1 then restart
7 end for 6: Sample ¢ < Beyp(—x/f)
8 return 1 7 if ¢ =1 then restart
9: end function > x=K-|Sc|? | 8  return0
9: end function > x=2-(z Sc)

Sampling algorithms for the distributions P, (—x/r) and

PB1) cosh(x/r) (ci =2'[f precomputed)
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BLISS rejection sampling

function SAMPLEBERNEXP(x) 1:
CosH(x)

1:

2 for i =0to/-1do

3 if x; =1 then

4: Sample a < %,
5: if a=0 then return 0
6

7

8

9:

end for
return 1
end function > x =K —|Sc|?

2
3
4:
end if 5:
6.
7
8
9

function SAMPLEBERN-

Sample a < PBeyp(—x/f)
if a=1 then return 1
Sample b < %,

if b=1 then restart
Sample ¢ < Beyp(—x/f)
if ¢ =1 then restart
return 0

: end function > x=2-(z,Sc)

Sampling algorithms for the distributions %,

PB1) cosh(x/r) (ci =2'[f precomputed)

xp(-x/f) and
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Experimental leakage

EMA trace of BLISS rejection sampling on 8-bit AVR for norm
[Sc|? = 14404. One reads the value:
K — ||Sc|? = 46539 — 14404 = 32135 = 1111101100001115

2
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What about the inner product leakage? (I)

» Recall the rejection sampling probability of BLISS signing:

y = )
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What about the inner product leakage? (1)

v

Recall the rejection sampling probability of BLISS signing:

y = )

» The exp part of the rejection sampling leaks |Sc|? and
ultimately the relative norm of s; and sy: used in CCS17

» Can't we use the cosh part instead? It directly leaks:
(z1,s1€) + (22,82€)

» If we know (¢, z1,2), this gives a linear relation on the secret:
recover everything from around 1024 signatures without
breaking a sweat!
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What about the inner product leakage? (I1)

» Problem: signatures do not contain z;, but only a compressed
variant z; and compression is lossy

» only obtain noisy linear system in the secret key
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What about the inner product leakage? (I1)

» Problem: signatures do not contain z;, but only a compressed
variant z; and compression is lossy

» only obtain noisy linear system in the secret key

» First reaction: like LWE in twice the original dimension, so
probably hopeless

» Second opinion: not hopeless at all, because there is no
modular reduction
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More precise description of the leakage

<21,81C> + <22, 52C)= (21, slc) + <2dZ£ + (22 - 2dz;r),52c)
= (z1¢",s1) + (2dz£c*,sz) +(z2 - 2dz§,52c)

b=(a,s)+e
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More precise description of the leakage

<21,81C> + <22, 52C)= (21, slc) + <2dZ£ + (22 - 2dz;r),52c)

= (z1¢",s1) + (2dz£c*,sz) +(z2 - 2dz§,52c)

b=(a,s)+e
where
s =(s1,82) (secret key)
a= (zlc*,2dz£c*) (known from sig.)
b = (z1,s1€) + (z2,52€) (leakage)
e=(zp— 2dz;r,52c) (small unknown value)
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The Integer LWE problem

» s secret vector in Z"

* Xa, Xe probability distributions over Z

Integer-LWE Problem

Given m samples (a;, b;) of the form:

aj < xJ bi=(a,s)+e (e« xe)
find s.
Like LWE, without the modular reduction but Var[xe]/Var[xa]

polynomial in n.
Can we solve this efficiently?
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Our main result

Integer-LWE is easy

Suppose Xa, Xe are centered distributions of std. dev. 0,,0.. We
show that we can recover s with m samples for

m=0(logn-(%2)").

» In particular, unless o is exponentially larger than o5, we can
always recover s with poly-many samples

» Rigorous results for x,, xe subgaussian distributions

» Lower bound: m:Q((g—:)2)
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Lower Bound on integer-LWE

Let Zsv.x. = {(a,(a,s)+e):a< xJ, e« xe}. Givens#s' € Z",
how close are the distributions Zs ., . and Ze y, v. ?

» We show that when e is either uniform or Gaussian, the
statistical distance is bounded by O(22||s - s'||)
Te
» Consequently, we need Q(w(g—z)% samples to distinguish
those distributions with constant success probability
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The least squares approach (1)

» Given m > n integer-LWE samples, we can put them in matrix
form:
AeZ™" b=As+e (b,ecZ™)
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The least squares approach (1)

» Given m > n integer-LWE samples, we can put them in matrix

form:
AeZ™" b=As+e (b,ecZ™)

» Overdetermined linear system with errors. Least squares: find
§ € R" minimizing ||A$ - b|3

» Solution:

§=(ATA)1ATb

» Only makes sense if AT A invertible, but this should be the case

for large m. Indeed: AT A= (<ai’af>)1si,jgn eZ™"

» Law of large numbers: ATA~ E[AT A]. Now:

m CE[x.]2=0 i+
E[(ai,a))] = Z Aikajk] = {m [X;] 2 IJ

k-1 m-E[x5]=mos i=]j

» Hence, ATA~ mag -1, for large m
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The least squares approach (I1)

» Claim: § is an approximation of s
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The least squares approach (I1)

» Claim: § is an approximation of s
» The difference is a function of A and e:

§-s=(ATA)'ATb-s
= (ATA) AT (As+e)-s=(ATA)1ATe
» Thus, we can bound the Euclidean distance:
[8-s]? = (ATA) AT e|?
<[(ATA) 2P| (ATA) AT e

N—— —
operator norm

=Mt eTAATA)TATe =21 e Me

min *

where Apin ® mag

M = A(AT A)LAT
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The least squares approach (I11)

» Usually, the least square method approximates ||§ - s|3, but we
need [§ - s|2, to round each coefficient
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The least squares approach (I11)

» Usually, the least square method approximates ||§ - s|3, but we
need [§ - s|2, to round each coefficient

» If e is Te-subgaussian, § — s is Te/\/Amin (AT A)-subgaussian
» if v e R™ is 7-subgaussian, Pr[|[v]e > t] < 2n-exp(-t2/272)

» Then, Pr[§ - s|e > 1/2] < 2n-exp(—%’m), where
Amin (AT A) < 722 whp
s If m > 322 log(2n), Pr[[§ - s|e > 1/2] = 1/2n

T
g

20/21 (©2017 NTT Secure Platform Laboratories



Conclusion

» Linear Regression + Rounding can be seen as equivalent to
Babai algorithm
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Conclusion

» Linear Regression + Rounding can be seen as equivalent to
Babai algorithm

» Nearest Plane Algorithm is not always better in practice when
the lattice is nearly orthogonal

» Taking into account sparsity of the BLISS secret key is not
easy even with linear programming in practice (similar to
compressed sensing)
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