Two-Message Statistically Sender-Private OT from LWE

Zvika Brakerski* and Nico Döttling†

*Weizmann Institute of Science

†FAU Erlangen-Nürnberg —> Cispa Helmholtz Center

2-Message Oblivious Transfer

2-Message Oblivious Transfer: Security

- Computational Receiver Security (best-possible): ot₁ computationally hides choice bit β
- Statistical Sender Security: There exists an unbounded extractor OTExt such that Sender(ot₁, μ_0 , μ_1) \approx_s Sender(ot₁, μ_β , μ_β) where β ' = OTExt(ot₁)

Maliciously Secure 2-round OT

- Useful primitive: 2-message WI proofs [BGI+17,JKKR17,KKS18], maliciously circuit-private FHE [GHV10,OPP14],...
- First instantiation: [NP01,AIR01] from DDH
- Also known from Hash-Proof Systems (e.g. QR/DCR) [Kal05,HK12,...]
- 0/1-nature of number-theoretic languages in these constructions is essential

Discrete Gaussians on \mathbb{Z}^{m}

$$X \sim D_{\mathbb{Z}^m,s}$$

has pmf

$$\Pr[X = x] = \frac{\rho_s(x)}{\rho_s(\mathbb{Z}^m)}$$

Learning With Errors

where

$$A \leftarrow_{\$} \mathbb{Z}_q^{n \times m}$$

$$s \leftarrow_{\$} \mathbb{Z}_q^n$$

$$e \leftarrow_{\$} \chi$$

$$u \leftarrow_{\$} \mathbb{Z}_q^m$$

 χ is B-bounded

Primal Regev Encryption, GPV08 version

Decryption

$$|c| = -sAx + sAx + ex + \frac{q}{2}\mu = \frac{q}{2}\mu + ex$$

e*x smaller than q/4 \Rightarrow msb is μ

Cauchy-Schwarz $|e\cdot x| \leq ||e||\cdot ||x|| \leq B\cdot \sigma_0\cdot m$

 \Rightarrow Scheme correct if $\sigma_0 \leq \frac{q}{4Bm}$

Dual Regev Trapdoor Function [GPV08]

[Ajt99,MP12]: A statistically close to uniform over $\mathbb{Z}_q^{(n+1) imes m}$

Eval(A,r,
$$\eta$$
): $y \leftarrow rA + \eta$ where $r \leftarrow_{\$} \mathbb{Z}_q^{n+1}$ $\eta \leftarrow_{\$} D_{\mathbb{Z}^m,\sigma_1}$

Trapdoor Inversion:

$$s \leftarrow \mathsf{Decode}(td, y)$$

Correct if
$$\|\eta\| \leq \frac{q}{\tilde{\Omega}(\sqrt{m})} \Leftrightarrow \sigma_1 \leq \frac{q}{\tilde{\Omega}(m)}$$

A simple Idea

- What happens if we us one and the same matrix A as public key in primal Regev encryption and the dual Regev TDF?
- Given a key A, compute two "ciphertexts":
 - $-c = Enc(A, \mu)$
 - y= Eval(A,r, η)
- Clearly, if A is a public key for primal Regev, we can recover μ
- Likewise, if A is a public key for dual Regev, we can recover r

A simple idea

- What happens in the other cases?
- Consider the lattice

$$\Lambda_q(A) = \{ z \in \mathbb{Z}^m : \exists v \in \mathbb{Z}_q^n \text{ s.t. } z = vA \pmod{q} \}$$

- Observervation: If A is an honestly generated primal Regev key, then $\Lambda_q(A)$ contains an unusually short vector
- Conversely, if A is an honestly generated dual Regev key, then $\Lambda_q(A)$ does not have short vectors (e.g. via transference, counting argument etc.)

Smoothing [MR04]

If
$$\sigma_0 > rac{q \cdot \sqrt{m}}{\lambda_1(\Lambda_q(A))} \geq \eta_\epsilon(\Lambda_q^\perp(A))$$

then $A \cdot x \approx_{\epsilon} u \pmod{q}$

thus $c = Ax + ECC(\mu)$ statistically hides μ

Lossiness

- [GG98,CDLP13]: AM protocols for gap-SVP
- Idea: If Lattice contains a short vector, then adding a sufficiently wide gaussian to a "random" lattice point is lossy
- Can turn this into lossiness argument for dual Regev

Lossiness of Dual Regev

(using techniques from [CDLP13])

If
$$\sigma_1 > 2 \cdot \lambda_1(\Lambda_q(A))$$

then
$$\tilde{H}_{\infty}(r\mid rA+\eta)>1-\mathrm{negl}$$

Thus

$$ilde{H}_{\infty}((r_1,\ldots,r_\ell)\mid r_1A+\eta_1,\ldots,r_\ell A+\eta_\ell)>\ell$$
 — negl

Making the cases overlap

Smoothing:
$$\lambda_1(\Lambda_q(A)) > \frac{q \cdot \sqrt{m}}{\sigma_0}$$

Lossiness:
$$\lambda_1(\Lambda_q(A)) < \frac{\sigma_1}{2}$$

One of the cases must occur if $\frac{\sigma_1}{2} > \frac{q \cdot \sqrt{m}}{\sigma_0}$

i.e.
$$\sigma_0 \cdot \sigma_1 > 2q\sqrt{m}$$

A simple scheme

B


```
If \beta = 0:
    (A,s) \leftarrow \mathsf{PR}.\mathsf{KeyGen}(1^{\lambda})
If \beta = 1:
    (A, td) \leftarrow \mathsf{DR}.\mathsf{KeyGen}(1^{\lambda})
If \beta = 0:
    \mu_0' \leftarrow \mathsf{PR.Dec}(s, c_0)
If \beta = 1:
    \forall I \in [\ell]: r_i \leftarrow \mathsf{DR.Decode}(td, y_i)
```

 $\mu_1 \leftarrow c_1^* \oplus Ext(r_1, \dots, r_\ell)$

Correctness

$$\sigma_0 \le \frac{q}{4Bm}$$

$$\sigma_1 \leq \frac{q}{\tilde{\Omega}(m)}$$

Security

- Receiver Security: LWE
- Sender Security: Statistical by the above reasoning: $\sigma_0 \cdot \sigma_1 > 2q\sqrt{m}$
- $\lambda_1(\Lambda_q(A))$ is very short \Rightarrow dual Regev is lossy \Rightarrow Ext(s₁,...,s_l) is statistically close to uniform and hides μ_1
- $\lambda_1(\Lambda_q(A))$ is not short \Rightarrow primal Regev statistically hides μ_0

Instantiation

$$q = \tilde{O}(n^3)$$

$$m = \tilde{O}(n)$$

$$\sigma_0 = \tilde{O}(n^{2.5})$$

$$\sigma_1 = \tilde{O}(n)$$

This yields worst-case approximation factor $\tilde{O}(n/\alpha) = \tilde{O}(n^{3.5})$

Drawbacks

- Scheme has very poor rate (1/poly) due to amplification for case $\beta = 1$
- Security is *very unbalanced*: $\beta = 0$ has very good security right away whereas $\beta = 1$ needs to be amplified via parallel repetition and extractors?
- Can we balance things such that both cases need to be a little bit amplified?

A more efficient scheme (Teaser only)

Ideas

- $\beta = 0$: Packed primal Regev encryption
- β = 1: Single instance of dual Regev TDF
- Use extractors in both cases

A more efficient scheme

• Lossiness argument in case $\beta = 1$ generalizes robustly to lattices $\Lambda_q(A)$ with many linearly independent short vectors

$$\tilde{H}_{\infty}(r \mid rA + \eta) \approx \log(\rho_{\sigma_1}(\Lambda_q(A)))$$

- similar to [DM13]
- Smoothing argument requires some refinement
- We obtain a scheme of rate $\,\tilde{\Omega}(1)\,$

Partial Smoothing

- Cannot guarantee uniformity of Ax mod q if $\Lambda_q(A)$ contains short vectors
- However: If $\Lambda_q(A)$ contains sufficiently few linearly independent short vectors, then Ax mod q is uniformly random in a subspace

Corollary 4.2. Let q > 0 be an integer and let $\gamma > 0$. Let $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ and let $\sigma > 0$ and $\epsilon > 0$ be such that $\rho_{q/\sigma}(\Lambda_q(\mathbf{A}) \setminus \gamma \mathcal{B}) \le \epsilon$. Let $\mathbf{D} \in \mathbb{Z}_q^{k \times m}$ be a full-rank (and therefore minimal) matrix with $\Lambda_q^{\perp}(\mathbf{D}) = \{\mathbf{x} \in \mathbb{Z}^m \mid \forall \mathbf{y} \in \Lambda_q(\mathbf{A}) \cap \gamma \mathcal{B} : \langle \mathbf{x}, \mathbf{y} \rangle = 0 \pmod{q} \}$. Let $\mathbf{x} \leftarrow D_{\mathbb{Z}^m, \sigma}$ and $\mathbf{u} \leftarrow \Lambda_q^{\perp}(\mathbf{D}) \pmod{q}$. Then it holds that

 $\mathbf{A}\mathbf{x} \mod q \approx_{\epsilon} \mathbf{A} \cdot (\mathbf{x} + \mathbf{u}) \mod q.$

Summary

- First two-round malicious OT scheme w/o setup from nonnumbertheoretic assumptions
- Standard LWE with poly approximation factor
- Optimized scheme with rate $\tilde{\Omega}(1)$

Thanks!

Coming soon to an eprint server near you!